精英家教网 > 初中数学 > 题目详情

【题目】将两个直角三角尺的顶点O叠放在一起

1)如图(1)若∠BOD=35°,则∠AOC=___;若∠AOC=135°,则∠BOD=___

2)如图(2)若∠AOC=140°,则∠BOD=___

3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.

【答案】1145°45°;(240°;(3)∠AOC与∠BOD互补,理由见解析

【解析】

1)由于是两直角三角形板重叠,根据∠AOC=AOB+COD-BOD可分别计算出∠AOC、∠BOD的度数;

2)根据∠BOD=360°-AOC-AOB-COD计算可得;

3)由∠AOD+BOD+BOD+BOC=180°且∠AOD+BOD+BOC=AOC可知两角互补;

解:(1)若∠BOD=35°,

∵∠AOB=COD=90°,

∴∠AOC=AOB+COD-BOD=90°+90°-35°=145°,

若∠AOC=135°,

则∠BOD=AOB+COD-AOC=90°+90°-135°=45°;

2)如图2,若∠AOC=140°,

则∠BOD=360°-AOC-AOB-COD=40°;

3)∠AOC与∠BOD互补,理由如下,

∵∠AOD+BOD+BOD+BOC=180°,

∵∠AOD+BOD+BOC=AOC

∴∠AOC+BOD=180°,

即∠AOC与∠BOD互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中的两点A(m,0),B(2m,0)(m>0),二次函数y=ax2+bx+m的图象与x轴交与A,B两点与y轴交于点C,顶点为点D.

(1)当m=1时,直线BC的解析式为 , 二次函数y=ax2+bx+m的解析式为
(2)求二次函数y=ax2+bx+m的解析式为(用含m的式子表示);
(3)连接AC、AD、BD,请你探究 的值是否与m有关?若有关,求出它与m的关系;若无关,说明理由;
(4)当m为正整数时,依次得到点A1 , A2 , …,Am的横坐标分别为1,2,…m;点B1 , B2 , …,Bm 的横坐标分别为2,4,…2m(m≤10);经过点A1 , B1 , 点A2 , B2 , …,点Am , Bm的这组抛物线y=ax2+bx+m分别与y轴交于点C1 , C2 , …,Cm , 由此得到了一组直线B1C1 , B2C2 , …,BmCm , 在点B1 , B2 , …,Bm 中任取一点Bn , 以线段OBn为边向上作正方形OBnEnFn , 若点En在这组直线中的一条直线上,直接写出所有满足条件的点En的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2 ,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.

1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含ab的代数式表示S1S2

2)请写出上述过程所揭示的乘法公式;

3试利用这个公式计算:(2+1)(22+1)(24+1)(28+1+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在四边形ABCD给出了下列三个论断:①对角线AC平分∠BAD;CD=BC;③∠D+B=180°.在上述三个论断中若以其中两个论断作为条件另外一个论断作为结论则可以得出______个正确的命题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC,AB=AC,BAC=90°,1=2,CEBDBD的延长线于点E.求证:BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC,∠ACB=90°,AC=BC,CDABD,M,NAC,BC上的动点,且∠MDN=90°,下列结论:①AM=CN;②四边形MDNC的面积为定值;③AM2+BN2=MN2;④NM平分∠CND.其中正确的是 (   )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.

投资量x(万元)

2

种植树木利润y1(万元)

4

种植花卉利润y2(万元)

2


(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.

查看答案和解析>>

同步练习册答案