【题目】如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点F,G,H分别是BE,CD,BC的中点
(1)观察猜想:图1中,△FGH的形状是______.
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△FGH的形状是否发生改变?并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=2,AB=6,请直接写出△FGH的周长的最大值.
【答案】(1)等边三角形;(2)不发生改变,理由见解析;(3)△PMN的周长的最大值为12.
【解析】
(1)观察猜想:
如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得FH∥CE,FH=CE,GH∥AD,GH=BD,从而得到FH=GH,∠FHG=60°,从而可判断△FGH为等边三角形;
(2)探究证明:
连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得FH∥CE,FH=CE,GH∥AD,GH=BD,可得FH=GH,∠BHF=∠BCE,∠CHG=∠CBD,则计算出∠BHF+∠CHG=120°,从而得到∠FHG=60°,于是可判断△FHG为等边三角形.
(3)拓展延伸:
利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为8,则GH的最大值为4,然后可确定△FHG的周长的最大值.
解:(1)观察猜想:
如图1,∵△ABC为等边三角形,
∴AB=AC,∠ABC=∠ACB=60°,
∵AD=AE,
∴BD=CE,
∵点F,G,H分别是BE,CD,BC的中点
∴FH∥CE,FH=CE,GH∥AD,GH=BD,
∴FH=GH,∠BHF=∠BCA=60°,∠CHG=∠CBA=60°,
∴∠FHG=60°,
∴△FGH为等边三角形;
故答案为:等边三角形;
(2)探究证明:
△PMN的形状不发生改变,仍然为等边三角形.
理由如下:连接CE、BD,如图2,
∵AB=AC,AE=AD,∠BAC=∠DAE=60°,
∴把△ABD绕点A逆时针旋转60°可得到△CAE,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
与(1)一样可得FH∥CE,FH=CE,GH∥AD,GH=BD,
∴FH=GH,∠BHF=∠BCE,∠CHG=∠CBD,
∴∠BHF+∠CHG=∠BCE+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,
∴∠FHG=60°,
∴△FHG为等边三角形.
(3)拓展延伸:
∵GH=BD,
∴当BD的值最大时,GH的值最大,
∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)
∴BD的最大值为2+6=8,
∴GH的最大值为4,
∴△PMN的周长的最大值为12.
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E点.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=60°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.解答要求如下:
(1)对于图中△ABC,用尺规作出一条中位线DE;(不必写作法,但应保留作图痕迹)
(2)根据(1)中作出的中位线,写出已知,求证和证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:两座建筑物AB、CD相距60米,从点A测得D点的俯角为30°,从A点下降10米到E点,在E点测得C点的俯角为43°求两座建筑物的高度.(精确到0.1)(参考数据:≈1.73,cos43°≈0.73,sin43°≈0.68,tan43°≈0.93)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)解方程:x2﹣5=4x.
(2)如图,四边形ABCD中,∠C=60°,∠BED=110°,BD=BC,点E在AD上,将BE绕点B逆时针旋转60°得BF,且点F在DC上,求∠EBD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k﹣1)x+k2=0有两个不等实根x1,x2,
(1)求实数k的取值范围;
(2)若方程两实根x1,x2满足x1+x2+x1x2﹣1=0,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
如图,同学们用矩形纸片ABCD开展数学探究活动,其中AD=8,CD=6。
操作计算
(1)如图(1),分别沿BE,DF剪去RtΔABE和RtΔCDF两张纸片,如果剩余的纸片BEDF菱形,求AE的长;
图(1) 图(2) 图(3)
操作探究
把矩形纸片ABCD沿对角线AC剪开,得到ΔABC和两张纸片
(2)将两张纸片如图(2)摆放,点C和重合,点B,C,D在同一条直线上,连接,记的中点为M,连接BM,MD,发现ΔBMD是等腰三角形,请证明:
(3)如图(3),将两张纸片叠合在一起,然后将纸片绕点B顺时针旋转a(00<a<900),连接和,探究并直接写出线段与的关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com