【题目】如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )
(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCD
A.1个B.2个C.3个D.4个
【答案】C
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(1)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.
解:∵EF⊥AC,点G是AE中点,
∴OG=AG=GE=AE,
∵∠AOG=30°,
∴∠OAG=∠AOG=30°,
∠GOE=90°﹣∠AOG=90°﹣30°=60°,
∴△OGE是等边三角形,故(1)正确;
设AE=2a,则OE=OG=a,
由勾股定理得,AO===a,
∵O为AC中点,
∴AC=2AO=2a,
∴BC=AC=×2a=a,
在Rt△ABC中,由勾股定理得,AB==3a,
∵四边形ABCD是矩形,
∴CD=AB=3a,
∴DC=3OG,故(2)正确;
∵OG=a,BC=a,
∴OG≠BC,故(3)错误;
∵S△AOE=aa=a2,
SABCD=3aa=3a2,
∴S△AOE=SABCD,故(4)正确;
综上所述,结论正确是(1)(2)(4),共3个.
故选:C.
科目:初中数学 来源: 题型:
【题目】某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为
(1)用含x的代数式表示低3年的可变成本为 万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,小明根据班上学生所报自选项目的情况绘制了统计图如下:
(1)补全条形统计图;
(2)若将各自选项的人数所占比例绘制成扇形统计图,求“三级蛙跳”对应扇形的圆心角的度数;
(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取2名学生进行推铅球测试,求所抽取的两名学生中至少有一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC
(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,于点. 点从点出发,沿线段向点运动,点从点出发,沿线段向点运动,两点同时出发,速度都为每秒1个单位长度,当点运动到时,两点都停止. 设运动时间为秒.
(1)求线段的长;
(2)当为何值时,是直角三角形?
(3)是否存在某一时刻,使得分的面积为1:11?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方方驾驶小汽车匀速地从A地行使到B地,行驶里程为480千米,设小汽车的行使时间为t(单位:小时),行使速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.
⑴求v关于t的函数表达式;
⑵方方上午8点驾驶小汽车从A出发.
①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.
②方方能否在当天11点30分前到达B地?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com