精英家教网 > 初中数学 > 题目详情
18.把a$\sqrt{-\frac{1}{a}}$根号外的因式移到根号内,化简的结果是(  )
A.$\sqrt{a}$B.$\sqrt{-a}$C.-$\sqrt{a}$D.-$\sqrt{-a}$

分析 根据二次根式的性质,可得答案.

解答 解:a$\sqrt{-\frac{1}{a}}$根号外的因式移到根号内,化简的结果是-$\sqrt{-a}$,
故选:D.

点评 本题考查了二次根式的性质,注意化简后不能改变原数的大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,∠1=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.(请为每一步推理注明依据)  
结论:∠A与∠3相等,
理由如下:
∵DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°(垂直的定义)
∴DE∥AB(同位角相等,两直线平行)
∴∠1=∠A(两直线平行,同位角相等)
由DE∥BC还可得到:
∠2=∠3(两直线平行,内错角相等)
又∵∠l=∠2(已知)
∴∠A=∠3(等量代换).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.求下列各式中x的值
(1)(2x-1)2=9
(2)2x3-6=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,若点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=$\frac{m}{x}$的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标;
(3)求点O到直线AB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.观察下列各式:$\sqrt{3+\frac{3}{2}}$=3$\sqrt{\frac{1}{2}}$,$\sqrt{4+\frac{4}{3}}$=4$\sqrt{\frac{1}{3}}$,$\sqrt{5+\frac{5}{4}}$=5$\sqrt{\frac{1}{4}}$,…,那么如果用字母n(n≥2的整数)表示上面的规律应该是$\sqrt{n+1+\frac{n+1}{n}}$=(n+1)$\sqrt{\frac{1}{n}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若不等式组$\left\{\begin{array}{l}{1+x<a}\\{\frac{x+9}{2}+1≥\frac{x+1}{3}-1}\end{array}\right.$有解,则实数a的取值范围是(  )
A.a>-36B.a≥-36C.a<-36D.a≤-36

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.2-$\sqrt{7}$的绝对值为$\sqrt{7}$-2,相反数为$\sqrt{7}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.某地为了缓解旱情进行了一场人工降雨,现测得6个面积相等区域的降雨量如下表所示:
区域123456
降雨量(mm)141213131715
则这6个区域降雨量的众数和平均数分别为(  )
A.13,13.8B.14,15C.13,14D.14,14.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,将△ABC先向右平移5个单位长度,再向上平移2个单位长度,得到△A′B′C′.
(1)作出△A′B′C′;
(2)△A'B'C'的三个顶点坐标分别是
A′(3,3)、B′(1,0)、C′(4,-1);
(3)求△ABC的面积.

查看答案和解析>>

同步练习册答案