精英家教网 > 初中数学 > 题目详情
8.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,将△ABC先向右平移5个单位长度,再向上平移2个单位长度,得到△A′B′C′.
(1)作出△A′B′C′;
(2)△A'B'C'的三个顶点坐标分别是
A′(3,3)、B′(1,0)、C′(4,-1);
(3)求△ABC的面积.

分析 (1)分别作出点A、B、C向右平移5个单位长度,再向上平移2个单位长度的点,然后顺次连接;
(2)根据网格结构写出各点的坐标;
(3)用三角形所在四边形的面积减去三个小三角形的面积即可求解.

解答 解:(1)所作图形如图所示:

(2)A'( 3,3)、B'( 1,0 )、C'(4,-1);

(3)S△ABC=4×3-1×4×$\frac{1}{2}$-2×3×$\frac{1}{2}$-1×3×$\frac{1}{2}$
=5.5.

故答案为:3,3,1,0,4,-1.

点评 本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.把a$\sqrt{-\frac{1}{a}}$根号外的因式移到根号内,化简的结果是(  )
A.$\sqrt{a}$B.$\sqrt{-a}$C.-$\sqrt{a}$D.-$\sqrt{-a}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.小明遇到这样一个问题:
如图1,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠AFE=∠ACB.
小明是这样思考问题的:如图2,以BC为直径作半⊙O,则点F、E在⊙O上,
∠BFE+∠BCE=180°,所以∠AFE=∠ACB.
请回答:若∠ABC=40°,则∠AEF的度数是40°.
参考小明思考问题的方法,解决问题:
如图3,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠BDF=∠CDE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,一次函数y=x+1的图象与反比例函数$y=\frac{k}{x}$(k为常数,且k≠0)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,一次函数y1=kx+b的图象与反比例函数y2=$\frac{6}{x}$的图象交于A(m,3),B(-3,n)两点.
(1)求一次函数的表达式;
(2)观察函数图象,直接写出关于x的不等式$\frac{6}{x}$>kx+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某水产品市场管理部分规定建造面积为2400m2的集贸大棚,大棚内设A、B两种类型的店面共80间,每间A种类型店面的面积为28m2,月租金为400元;每间B种类型店面的面积为20m2,月租金为360元,全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.
(1)试确定A种类型店面数量的范围.
(2)该大棚管理部门通过了解业主的租赁意向得知,A种型店面的出租率为75%,B中店面的出租率为90%.
①开发商计划每年恰好有29.52万元的租金收入,你认为这一目标能够实现吗?若能,应该如何安排建造A、B两种类型店面的数量?若不能,请说明理由
②A、B两种类型的店面各建造多少间时,店面的月租金最高?最高月租金收入是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,菱形ABCD中,对角线AC,BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC截取CF=CO,连接OF,若AC=8,BD=6,求四边形OFCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.化简:($\frac{x+1}{{x}^{2}-x}$-$\frac{x}{{x}^{2}-2x+1}$)÷$\frac{1}{x}$+$\frac{{x}^{2}}{(x-1)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.

查看答案和解析>>

同步练习册答案