精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线轴交于两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连接,则线段的最小值是( )

A.B.C.D.

【答案】A

【解析】

根据抛物线解析式即可得出A点与B点坐标,结合题意进一步可以得出BC长为5,利用三角形中位线性质可知OE=BD,而BD最小值即为BC长减去圆的半径,据此进一步求解即可.

∴当时,

解得:

A点与B点坐标分别为:(0)(30)

即:AO=BO=3

O点为AB的中点,

又∵圆心C坐标为(04)

OC=4

BC长度=

O点为AB的中点,E点为AD的中点,

OE为△ABD的中位线,

即:OE=BD

D点是圆上的动点,

由图可知,BD最小值即为BC长减去圆的半径,

BD的最小值为4

OE=BD=2

OE的最小值为2

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,直线轴负半轴)轴正半轴于两点, 的面积为4.5

如图1.求的值;

如图2.在轴负半轴上取点.点在第一象限,连接,过点的延长线于点,若,求的值;

如图3,在的条件下.轴于点轴交的延长线于点,设轴交于点,连接,当时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )

A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多

C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是对角线BD上一点,连接AECE

1)求证:AE=CE

2)若BC=BE=6,求tanBAE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,轴的正半轴,分别与双曲线相交于点和点,且,若,则点的横坐标为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图1所示,每千克成本y2(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(61)

1)求出y1x函数关系式;

2)求出y2x函数关系式;

3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,点DAB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且,连接GO并延长交⊙O于点F,连接BF

1)求证:AOAG

2)求证:BF是⊙O的切线;

3)若BD6,求图形中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直线上,点位于的同侧,连接.

1)如图1,求证:

2)如图2,连接,请直接写出图中所有的全等三角形(除外)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像经过点A(-1,0),并与反比例函数)的图像交于Bm,4

1)求的值;

2)以AB为一边,在AB的左侧作正方形,求C点坐标;

3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.

查看答案和解析>>

同步练习册答案