精英家教网 > 初中数学 > 题目详情

【题目】如图1E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为ts),BPQ的面积为y),已知yt之间的函数图象如图2所示.

给出下列结论:①当0t≤10时,△BPQ是等腰三角形;②=48;③当14t22时,y=110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5

其中正确结论的序号是_______

【答案】①③⑤.

【解析】解:由图象可以判定:BE=BC=10 cmDE=4 cm,当点PED上运动时,SBPQ=BCAB=40cm2AB=8 cmAE=6 cm0t≤10时,点PBE上运动,BP=BQ∴△BPQ是等腰三角形,故正确;

SABE=ABAE=24 cm2,故错误;

14t22时,点PCD上运动,该段函数图象经过(1440)和(220)两点,解析式为y=110﹣5t,故正确;

ABP为等腰直角三角形需要分类讨论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点PAB垂直平分线上,所以BECD上各存在一个符号题意的P点,共有4个点满足题意,故错误;

⑤△BPQABE相似时,只有;BPQ∽△BEA这种情况,此时点Q与点C重合,即PC=7.5,即t=14.5

正确.

综上所述,正确的结论的序号是①③⑤

故答案为:①③⑤

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某水果批发商经营甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(万元)与进货量x(吨)近似满足函数关系,乙种水果的销售利润(万元)与进货量x(吨)之间的函数关系如图所示.

1)求(万元)与x(吨)之间的函数关系式;

2)如果该批发商准备进甲、乙两种水果共10,设乙种水果的进货量为t吨,请你求出这两种水果所获得的销售利润总和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润总和最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,动点EA出发,沿ABBC方向运动,当点E到达点C时停止运动,过点EFEAE,交CDF点,设点E运动路程为xFCy,如图2所表示的是yx的函数关系的大致图象,当点EBC上运动时,FC的最大长度是,则矩形ABCD的面积是(  )

A. B. 5C. 6D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:)

(1)求这7天内小申家每天用水量的平均数和中位数;

(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;

(3)请你根据统计图中的信息,给小申家提出一条全理的节约用水建议,并估算采用你的建议后小申家一个月(30天计算)的节约用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学兴趣小组的活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图①位置放置,ADAE在同一直线上,ABAG在同一直线上.

⑴小明发现DGBE,请你帮他说明理由.

⑵如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD,点P在射线CB上运动(不包含点BC),连接DP,交AB于点M,作BEDP于点E,连接AE,作∠FAD=EABFADP于点F

(1)如图a,当点PCB的延长线上时,

①求证:DF=BE

②请判断DEBEAE之间的数量关系并证明;

(2)如图b,当点P在线段BC上时,DEBEAE之间有怎样的数量关系?请直接写出答案,不必证明;

(3)如果将已知中的正方形ABCD换成矩形ABCD,且ADAB=1,其他条件不变,当点P在射线CB上时,DEBEAE之间又有怎样的数量关系?请直接写出答案,不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:

(1)若设每件降价x元、每星期售出商品的利润为y元,请写出yx的函数关系式,并求出自变量x的取值范围;

(2)当降价多少元时,每星期的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小雨、小华、小星暑假到某超市参加社会实践活动,在活动中他们参加了某种水果的销售工作,已知该水果的进价为8/千克.他们通过市场调查发现:当销售单价为10元时,那么每天可售出300千克;销售单价每上涨1元,每天的销售量就减少50千克.

(1)求该超市销售这种水果,每天的销售量y(千克)与销售单价x(/千克)之间的函数关系式;

(2)一段时间后,发现这种水果每天的销售量均不低于250千克,则此时该超市销售这种水果每天获取的利润w()最大是多少?

(3)为响应政府号召,该超市决定在暑假期间每销售1千克这种水果就捐赠a元利润(a2.5)给希望工程.公司通过销售记录发现,当销售单价不超过13元时,每天扣除捐赠后的日销售利润随销售单价x(/千克)的增大而增大,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走9m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

1)求∠BPQ的度数;

2)求该电线杆PQ的高度.(结果保留根号)

查看答案和解析>>

同步练习册答案