精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△APE,∠AEP=90°,以AB为直径的⊙,OPEC,且AC平分∠EAP.连接BCPBPC=1:2.

(1)求证:PE是⊙O的切线;

(2)已知⊙O的半径为,求AE的长.

【答案】(1)见解析;(2)4

【解析】

1)连接OC,由AC平分∠EAP,得到∠DAC=OAC,由等腰三角形的性质得到∠CAO=ACO,等量代换得到∠DAC=ACO,根据平行线的性质得到∠E=OCP=90°,于是得到结论;

2)设PB=xPC=2x,根据勾股定理得到PC=求得AP=,根据相似三角形的性质即可得到结论.

解:(1)连接OC

AC平分∠EAP

∴∠DAC=∠OAC

OAOC

∴∠CAO=∠ACO

∴∠DAC=∠ACO

AEOC

∴∠E=∠OCP90°

PE是⊙O的切线;.

2)∵PBPC12

∴设PBxPC2x

OC2+PC2OP2,即(2+2x2=(+x2

x.

PCPB

AP.

OCAE

∴△PCO∽△PEA

AE4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点ECD边上,点GBC的延长线上,设以线段ADDE为邻边的矩形的面积为,且.

⑴求线段CE的长;

⑵若点HBC边的中点,连结HD,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.

(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;

(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?

(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个等腰三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图,矩形ABCDAB6cmAD2cm,点P2cm/s的速度从顶点A出发沿折线ABC向点C运动,同时点Qlcm/s的速度从顶点C出发向点D运动,当其中一个动点到达末端停止运动时,另一点也停止运动.

(1)问两动点运动几秒,使四边形PBCQ的面积是矩形ABCD面积的

(2)问两动点经过多长时间使得点P与点Q之间的距离为?若存在,

求出运动所需的时间;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P2cm/s的速度从B点出发沿着B→A的方向运动,点Q1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当APQ是直角三角形时,t的值为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国高铁迅猛发展,给我们的出行带来极大的便捷,如图1,是某种新设计动车车头的纵截面一部分,曲线OBA是一开口向左,对称轴正好是水平线OC的抛物线的一部分,点AB是车头玻璃罩的最高点和最低点,ACBD是两点到车厢底部的距离,OD=1.5米,BD=1.5米,AC=3米,请你利用所学的函数知识解决以下问题.

1)为了方便研究问题,需要把曲线OBA绕点O旋转转化为我们熟悉的函数,请你在所给的方框内,画出你旋转后函数图象的草图,在图中标出点OABCD对应的位置,并求你所画的函数的解析式.

2)如图2,驾驶员座椅安装在水平线OC上一点P处,实验表明:当PA+PB最小时,驾驶员驾驶时视野最佳,为了达到最佳视野,求OP的长.

3)驾驶员头顶到玻璃罩的高度至少为0.3米才感到压抑,一个驾驶员坐下时头顶到椅面的距离为1米,在(2)的情况下,座椅最多条件到多少时他才感到舒适?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.

(1)求抛物线的解析式;

(2)求抛物线的顶点坐标

(3)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线y=x2+bx(b>2)上存在关于直线y=x成轴对称的两个点,则b的取值范围是______.

查看答案和解析>>

同步练习册答案