精英家教网 > 初中数学 > 题目详情
20.如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与A、B重合),当PA=2$\sqrt{2}$或$\frac{8\sqrt{5}}{5}$时,△PAD为等腰三角形.

分析 分别从当PA=PD,PA=AD,AD=PD时,△PAD是等腰三角形讨论,然后由等腰三角形的性质与射影定理即可求得答案.

解答 解:①当PA=PD时,
此时P位于四边形ABCD的中心,
过点P作PE⊥AD于E,作PM⊥AB于M,
则四边形EAMP是正方形,
∴PM=PE=$\frac{1}{2}$AB=2,
∵PM2=AM•BM=4,
∵AM+BM=4,
∴AM=2,
∴PA=2$\sqrt{2}$,
②当PA=AD时,PA=4(舍);
③当PD=DA时,以点D为圆心,DA为半径作圆与弧AB的交点为点P.
连PD,令AB中点为O,再连DO,PO,DO交AP于点G,
则△ADO≌△PDO,
∴DO⊥AP,AG=PG,
∴AP=2AG,
又∵DA=2AO,
∴AG=2OG,
设AG为2x,OG为x,
∴(2x)2+x2=4,
∴x=$\frac{2\sqrt{5}}{5}$,
∴AG=2x=$\frac{4\sqrt{5}}{5}$,
∴PA=2AG=$\frac{8\sqrt{5}}{5}$;
∴PA=2$\sqrt{2}$或4或$\frac{8\sqrt{5}}{5}$,
故答案为:2$\sqrt{2}$或$\frac{8\sqrt{5}}{5}$.

点评 此题考查了正方形的性质,圆周角的性质以及勾股定理等知识.此题综合性很强,解题时要注意数形结合与方程思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.某校实验课程改革,初三年级设罝了A,B,C,D四门不同的拓展性课程(每位学生只选修其中一门,所有学生都有一门选修课程),学校摸底调査了初三学生的选课意向,并将调查结果绘制成两个不完整的统计图,问该校初三年级共有多少学生?其中要选修B、C课程的各有多少学生?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.甲,乙二人在400m环形跑道上同一起点同时背向起跑,25s后相遇,若甲先从起跑点出发,0.5min后乙也从该点同向出发追赶甲,经过3min乙追上甲,求甲、乙二人的速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts.
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF.
(2)填空:
①当t=6s时,四边形ACFE是菱形;
②当t=$\frac{12}{5}$或4s时,S△ACE=2S△FCE

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.问题背景:
在△ABC中,AB、BC、AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上$\frac{7}{2}$;
(2)若△ABC三边的长分别为$\sqrt{{m}^{2}+16{n}^{2}}$、$\sqrt{9{m}^{2}+4{n}^{2}}$、2$\sqrt{{m}^{2}+{n}^{2}}$(m>0,n>0,且m≠n),运用构图法可求出这三角形的面积为5mn.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,某建筑物AB的高为6米,在建筑物顶端A测得一棵树CD的点C的俯角为45°,在地面点B测得点C的仰角为60°,求树高CD(结果精确到0.1米).(参考数据:$\sqrt{3}$≈1.7,$\sqrt{2}$≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
(1)这次知识竞赛共有多少名学生?
(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长是7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.一列快车长160m,一列慢车长170m,如果两车相向而行,从相遇到离开需5s,如果同向而行,从快车追上慢车到离开需33s,求快车、慢车速度.

查看答案和解析>>

同步练习册答案