【题目】已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.
(1)如图,当点M与点A重合时,求抛物线的解析式;
(2)在(1)的条件下,求点N的坐标和线段MN的长;
(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+5x﹣;(2)2;(3)M点的坐标为(2,﹣1)或(4,3).
【解析】试题分析:(1)①首先求得直线与x轴,y轴的交点坐标,利用二次函数的对称轴的公式即可求解;
②N在直线上同时在二次函数上,因而设N的横坐标是a,则在两个函数上对应的点的纵坐标相同,据此即可求得a的值,即N的坐标,过N作NC⊥x轴,垂足为C,利用勾股定理即可求得MN的长;
(2)△AOB的三边长可以求得OB=2OA,AB边上的高可以求得是,抛物线y=-x2+bx+c在直线AB上平移,则MN的长度不变,根据(1)的结果是2,MN是AB边上的高的二倍,当OM⊥AB或ON⊥AB时,两个三角形相似,据此即可求得M的坐标.
试题解析:(1)①∵直线y=2x-5与x轴和y轴交于点A和点B,
∴A(,0),B(0,-5).
当顶点M与点A重合时,
∴M(,0).
∴抛物线的解析式是:y=(x)2.即y=x2+5x.
②∵N在直线y=2x-5上,设N(a,2a-5),又N在抛物线y=x2+5x上,
∴2a5=a2+5a.
解得a1=,a2=(舍去)
∴N(,4).
过N作NC⊥x轴,垂足为C.
∵N(,4),
∴C(,0).
∴NC=4.MC=OMOC==2.
∴MN=;
(2)设M(m,2m-5),N(n,2n-5).
∵A(,0),B(0,-5),
∴OA=,OB=5,则OB=2OA,AB=,
当∠MON=90°时,∵AB≠MN,且MN和AB边上的高相等,因此△OMN与△AOB不能全等,
∴△OMN与△AOB不相似,不满足题意.
当∠OMN=90°时, ,即,解得OM=,
则m2+(2m-5)2=()2,解得m=2,
∴M(2,-1);
当∠ONM=90°时, ,即,解得ON=,
则n2+(2n-5)2=()2,解得n=2,
∵OM2=ON2+MN2,
即m2+(2m-5)2=5+(2)2,
解得m=4,
则M的坐标是M(4,3).
故M的坐标是:(2,-1)或(4,3).
科目:初中数学 来源: 题型:
【题目】如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:BG2﹣GE2=EA2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 180 |
(1)求a,b的值;
(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球C:足球;D:羽毛球,E:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目D的扇形圆心角是72°
C.选科目A的人数占体育社团人数的一半
D.选科目B的扇形圆心角比选科目D的扇形圆心角的度数少21.6°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,试判断与的大小关系,并证明你的结论。
猜想:∠AED=∠C,
理由:∵∠2+∠ADF=180°( ),
∠1+∠2=180°( ),
∴∠1=∠ADF( ),
∴AD∥EF( ),
∴∠3=∠ADE( ),
∵∠3=∠B( ),
∴∠B=∠ADE( ),
∴DE∥BC( ),
∴∠AED=∠C( ),
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点D在BC上,点E在AB上,且DE∥AC,AE=5,DE=2,DC=3,动点P从点A出发,沿边AC以每秒2个单位长的速度向终点C运动,同时动点F从点C出发,在线段CD上以每秒1个单位长的速度向终点D运动,设运动时间为t秒.
(1)线段AC的长=________;
(2)当△PCF与△EDF相似时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com