精英家教网 > 初中数学 > 题目详情

【题目】为了落实三个代表重要思想,确保人民群众利益,抵御百年不遇的洪水,市政府决定今年将米长的粑铺大堤的迎水坡面铺石加固.如图,堤高米,堤面加宽米,坡度由原来的改成.则完成这一工程需要的石方数为________立方米.

【答案】

【解析】

由题意可知,要求的石方数其实就是横截面为ABCD的立方体的体积.那么求出四边形ABCD的面积是问题的关键.

RtBFD中,∠DBF的坡度为1:2,

BF=2DF=8,SBDF=BF×FD÷2=16,

RtACE中,∠A的坡度为1:2.5,

CE:AE=1:2.5,CE=DF=4,AE=10,

S梯形AFDC=(AE+EF+CD)×DF÷2=28,

S四边形ABCD=S梯形AFDC-SBFD=12.

那么所需的石方数应该是12×12000=144000(立方米).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从如图所示的二次函数)的图象中,观察得出了下面5条信息:①.你认为其中正确的信息有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):

某校被调查学生选择社团意向统计表

选择意向

所占百分比

文学鉴赏

a

科学实验

35%

音乐舞蹈

b

手工编织

10%

其他

c

根据统计图表中的信息,解答下列问题:

(1)求本次调查的学生总人数及a,b,c的值;

(2)将条形统计图补充完整;

(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=16,OAB中点,点C在线段OB上(不与点OB重合),将OC绕点O逆时针旋转270°后得到扇形CODAPBQ分别切优弧于点PQ且点P QAB异侧,连接OP

(1)求证:APBQ

(2)当BQ=4时,求扇形COQ的面积及的长(结果保留π);

(3)若APO的外心在扇形COD的内部,请直接写出OC的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是矩形ABCD的一条对角线.

(1)BD的垂直平分线EF,分别交ADBC于点EF,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)

(2)(1)中,连接BEDF,求证:四边形DEBF是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设PCD的面积为S,则用m表示S正确的是(  )

A. (m2﹣4) B. m2﹣2 C. (4﹣m2 D. 2﹣m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形 ABCD 中,对角线 AC、BD 相交于点 O,过点 O 的两条直线分别交边 AB、CD、AD、BC 于点 E、F、G、H.

(感知)如图,若四边形 ABCD 是正方形,且 AG=BE=CH=DF,则 S 四边形AEOG S 正方形 ABCD

(拓展如图②,若四边形 ABCD 是矩形 S 四边形 AEOGS 矩形 ABCD AB=a, AD=b,BE=m, AG 的长用含 a、b、m 的代数式表示);

(探究)如图,若四边形 ABCD 是平行四边形,且 AB=3,AD=5,BE=1, 试确定 F、G、H 的位置,使直线 EF、GH 把四边形 ABCD 的面积四等分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD与AC相交于点E,AB=9,BC=4,DC=3.

(1)求BE的长度;

(2)求△ABE的面积.

查看答案和解析>>

同步练习册答案