【题目】图1所示的三棱柱,高为8cm,底面是一个边长为5cm的等边三角形.
(1)这个三棱柱有 条棱,有 个面;
(2)图2框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可);
(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开 条棱,需剪开棱的棱长的和的最大值为 cm.
科目:初中数学 来源: 题型:
【题目】如图:直线AB、CD相交于点O;
(1)若∠AOC=30°,则∠BOC= °,∠BOD= °;
(2)将直线CD绕点O旋转,请根据下表所给数据将表格补充完整;
∠AOC | 60° | 90° | x° |
∠BOD |
|
|
|
(3)如图3,过点O分别作∠AOC与∠AOD的角分线OE、OF,若∠BOD的度数为α,请用含α的代数式表示∠COF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图并回答下列问题
已知方格图中每一小格单位长度为1cm,长方形ABCD的顶点都在方格的顶点上,将长方形ABCD绕点A逆时针旋转90°得到四边形AB1C1D1.
(1)画出四边形AB1C1D1
(2)如果将四边形AB1C1D1沿射线AB方向向右平移x cm,
①当线段C1D1在线段AD的左侧时,用含x的代数式表示四边形AB1C1D1与长方形ABCD重叠部分的面积S.
②若四边形AB1C1D1与长方形ABCD重叠部分的面积为4.5 cm2时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形中,点在轴上,点在轴上,点的坐标是,长方形沿直线折叠,使得点落在对角线上的点处,折痕与、轴分别交于点、.
(1)求线段的长;
(2)求点的坐标;
(3)若点在直线上,在轴上是否存在点,使以、、、为顶点的四边形是平行四边形?若存在,请求出满足条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.
(1)求证:AB=AF;
(2)若BC=2AB,∠BCD=110°,求∠ABE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】化简
(1)mn﹣4mn;
(2)3a2﹣2a﹣a2﹣4﹣6a+9;
(3)4(x2﹣5x)﹣5(2x2+3x);
(4)3x2﹣[7x﹣(4x﹣3)﹣2x2]
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.
①把向上平移5个单位后得到对应的,画出,并写出的坐标;
②以原点为对称中心,画出与关于原点对称的,并写出点的坐标.
③以原点O为旋转中心,画出把顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知代数式A=x2+3xy+x﹣12,B=2x2﹣xy+4y﹣1
(1)当x=y=﹣2时,求2A﹣B的值;
(2)若2A﹣B的值与y的取值无关,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校决定在4月7日开展“世界无烟日”宣传活动,活动有A.社区板报、B.集会演讲、C.喇叭广播、D.发宣传画四种宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:
请结合统计图表,回答下列问题:
(1)本次抽查的学生共______人,m=____________,并将条形统计图补充完整;
(2)若该校学生有1500人,请你估计该校喜欢“集会演讲”这项宣传方式的学生约有多少人?
(3)学校采用抽签方式让每班在A、B、C、D四种宣传方式中随机抽取两种进行展示,请用树状图或列表法求某班所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com