如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.
(1)求证:AP=AO;
(2)求证:PE⊥AO;
(3)当AE=
AC,AB=10时,求线段BO的长度.
![]()
(1)证明:∵∠C=90°,∠BAP=90°
∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,
又∵∠CBO=∠ABP,
∴∠BOC=∠APB,
∵∠BOC=∠AOP,
∴∠AOP=∠APB,
∴AP=AO;
(2)证明:如图,过点O作OD⊥AB于D,
∵∠CBO=∠ABP,
∴CO=DO,
∵AE=OC,
∴AE=OD,
∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,
∴∠AOD=∠PAE,
在△AOD和△PAE中,
,
∴△AOD≌△PAE
(SAS),
∴∠AEP=∠ADO=90°
∴PE⊥AO;
(3)解:设AE=OC=3k,
∵AE=
AC,∴AC=8k,
∴OE=AC﹣AE﹣OC=2k,
∴OA=OE+AE=5k.
由(1)可知,AP=AO=5k.
如图,过点O作OD⊥AB于点D,
∵∠CBO=∠ABP,∴OD=OC=3k.
在Rt△AOD中,AD=
=
=4k.
∴BD=AB﹣AD=10﹣4k.
∵OD∥AP,
∴
,即![]()
解得k=1,
∵AB=10,PE=AD,
∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3
在Rt△BDO中,由勾股定理得:
BO=
=
=3
.
![]()
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为( )
![]()
A.
﹣4 B.10π﹣4 C.10π﹣8 D.
﹣8
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEF
G,且菱形AEFG∽菱形ABCD,连接EB,GD.
(1)求证:EB=GD;
(2)若∠DAB=60°,AB=2,AG=
,求GD的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知△ABC的三边长分别为
,
,2,△A′B′C′的两边长分别是1和
,如果△ABC与△A′B′C′相似,那么△A′B′C′的第三边长应该是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若tan∠ABC=
,BE=7
,求线段PC的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com