【题目】(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,
①则线段BC,DC,EC之间满足的等量关系式为 ;
②求证:BD2+CD2=2AD2;
(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
【答案】(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.
【解析】
(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;
(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.
(1)①解:BC=DC+EC,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=EC,
∴BC=DC+BD=DC+EC,;
故答案为:BC=DC+EC;
②证明:∵Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=∠ACB+∠ACE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,
又AD=AE,
∴BD2+CD2=2AD2;
(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD与△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE===6,
∵∠DAE=90°,
∴AD=AE=DE=6.
科目:初中数学 来源: 题型:
【题目】某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:
成绩统计分析表
(1)张明第2次的成绩为__________秒;
(2)请补充完整上面的成绩统计分析表;
(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的部分函数图象如图.
(1)A、B两地相距____千米,甲的速度为____千米/分;
(2)求线段EF所表示的y与x之间的函数表达式;
(3)当乙到达终点A时,甲还需多少分钟到达终点B?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,
(1)求∠EAF的度数;
(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ ND2 ;
(3)在图②中,若AG=12, BM=,直接写出MN的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个长方体的表面展开图,每个外表面都标注了字母,请根据要求回答问题:
(1)如果面A在多面体的底部,那么哪一个面会在上面?
(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?
(3)如果从右面看是面C,面D在后面,那么哪一个面会在上面?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A,B,C,D,E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)这30名职工捐书本数的众数是 本,中位数是 本;
(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,点E位于边BC上,已知BD是BA与BE的比例中项.
(1)求证:∠CDE=∠ABC;
(2)求证:ADCD=ABCE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作已知角的角平分线”的尺规作图过程.
已知:如图1,∠MON.
求作:射线OP,使它平分∠MON.
作法:如图2,
(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;
(2)连结AB;
(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;
(4)作射线OP.
所以,射线OP即为所求作的射线.
请回答:该尺规作图的依据是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com