【题目】如图,在平面直角坐标系中,正方形OABC的边长为4,把它内部及边上的横、纵坐标均为整数的点称为整点,点P为抛物线的顶点(m为整数),当点P在正方形OABC内部或边上时,抛物线下方(包括边界)的整点最少有( )
A.3个B.5个C.10个D.15个
【答案】B
【解析】
根据题意,可以得到当点P在正方形OABC内部或边上时,抛物线下方(包括边界)的整点最少m的值,从而可以得到最少时点的坐标,进而得到最少时有几个点.
∵点P为抛物线y=﹣(x﹣m)2+m+2的顶点(m为整数),
∴点P的坐标为(m,m+2),
又∵点P在正方形OABC内部或边上,
∴当m=0时,抛物线y=﹣x2+2,此时抛物线下方(包括边界)的整点最少,
当x=1时,y=1,当x=2时,y=﹣2,
∵正方形OABC的边长为4,把它内部及边上的横、纵坐标均为整数的点称为整点,
∴当m=0时,抛物线y=﹣x2+2下方(包括边界)的整点有:(0,2),(0,1),(0,0),(1,0),(1,1),
即当点P在正方形OABC内部或边上时,抛物线下方(包括边界)的整点最少有5个,
故选:B.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.
(1)求抛物线的解析式;
(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;
(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF不与y轴平行),求证:直线EF恒过某一定点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线与抛物线的形状相同,开口方向相反,且相交于点和点.抛物线与轴正半轴交于点为抛物线上两点间一动点,过点作直线轴,与交于点.
(1)求抛物线与抛物线的解析式;
(2)四边形的面积为,求的最大值,并写出此时点的坐标;
(3)如图2,的对称轴为直线,与交于点,在(2)的条件下,直线上是否存在一点,使得以为顶点的三角形与相似?如果存在,求出点的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和C(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b<c.其中含所有正确结论的选项是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点B(3,0),C(0,-2),直线L:交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A重合).
(1)求抛物线的解析式.
(2)当点P在直线L下方时,过点P作PM∥x轴交L于点M,PN∥y轴交L于点N,求PM+PN的最大值.
(3)设F为直线L上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)
(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.
(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.
(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.
(1)求证:直线BC是⊙O的切线;
(2)若AE=2,tan∠DEO=,求AO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:
(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为 ;
(2)当轿车与货车相遇时,求此时x的值;
(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com