【题目】某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?
(2)若宾馆某一天获利10640元,则房价定为多少元?
(3)房价定为多少时,宾馆的利润最大?
【答案】(1)9200元;(2)房价定为300元或400元;(3)房价是350元时,利润最大.
【解析】试题分析: (1)根据利润=房价的净利润×入住的房间数可得;
(2)设每个房间的定价为a元,根据以上关系式列出方程求解可得;
(3)根据(1)中相等关系列出函数解析式,根据函数的性质可得最值情况.
试题解析:
(1)若每个房间定价增加40元,则这个宾馆这一天的利润为(180+40-20)×(50)=9200元;
(2)设每个房间的定价为a元,
根据题意,得: ,
解得:a=300或a=400,
答:若宾馆某一天获利10640元,则房价定为300元或400元;
(3)设房价增加x元时,利润为w,
则
因而当x=170时,即房价是350元时,利润最大。
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(m,n)在第一象限内,m,n均为整数,且满足.
(1)求点A的坐标;
(2)将线段OA向下平移a(a>0)个单位后得到线段,过点作轴于点B,若,求a的值;
(3)过点A向x轴作垂线,垂足为点C,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点C出发,以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,当时,判断四边形AMON的面积的值是否变化?若不变,求出其值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上两点,经过点A,C,B的抛物线的一部分C1与经过点A,D,B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0, ),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点:
(1)求A、B两点的坐标;
(2)求经过点A,C,B的抛物线C1的函数表达式.
(3)探究“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC面积的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个动点P在平面直角坐标系中按箭头所示方向作折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),……,按这样的运动规律,经过第2019次运动后,动点P的坐标是___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】[问题]如图①,点是的角平分线上一点,连接,,若与互补,则线段与有什么数量关系?
[探究]
探究一:如图②,若,则,即,,又因为平分,所以,理由是:_______.
探究二:若,请借助图①,探究与的数量关系并说明理由.
[结论]点是的角平分线上一点,连接,,若与互补,则线段与的数量关系是______.
[拓展]已知:如图③,在中,,,平分.求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是( )
A. (2018,0)B. (2018,2)C. (2019,2)D. (2019,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com