精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2-2m+1x-3m
1)若m=2,则该函数的表达式为_____,求出函数图象的对称轴为_____
2)对于此函数,在-1≤x≤1的范围内至少有x值使得y≥0,则m的取值范围为____

【答案】y=x2-5x-6 x=

【解析】

1)把m=2代入y=x2-2m+1x-3m即可求得函数的表达式,进而根据对称轴x=- 求得对称轴;
2)在自变量的取值范围内取两个值,代入函数确定不等式组求解即可.

(1)若m=2,则二次函数y=x2-5x-6
∴对称轴为直线x=-

(2)∵二次函数y=x2-2m+1x-3m-1≤x≤1的范围内至少有一个x的值使y≥0

解得:


解得:
根据题意,可得m的取值范围是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线C1y=(x+2,平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2,抛物线C2x轴于AB两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a

1)当OC2时,求抛物线C2的解析式;

2)在抛物线的C2的对称轴上是否存在一点P,使得AP+CP的长最短?若存在,求出点P的坐标(用含a的代数式表示);若不存在,请说明理由;

3)在(2)的条件下,连接OP,若OPBC,求此时a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,﹣2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).请用列表或树状图的方法(只选其中一种)求出两个数字之积为负数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题10分)如图,直线y=x+m和抛物线y=+bx+c都经过点A(1,0),

B(3,2)

(1)求m的值和抛物线的解析式;

(2)求不等式x2+bx+c>x+m的解集(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABCD四点在⊙O上的位置,其中=180°,且==.若阿超在上取一点P,在上取一点Q,使得∠APQ=130°,则下列叙述何者正确( )

A. Q点在上,且>B. Q点在上,且<

C. Q点在上,且>D. Q点在上,且<

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将二次函数yx25x6x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y2x+b与这个新图象有3个公共点,则b的值为(  )

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+c经过A(﹣30),B10),C03)三点.

1)求抛物线的函数表达式;

2)如图1P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;

3)如图2D为抛物线的顶点,在线段AD上是否存在点M,使得以MAO为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠DAF300MCD上一点,AM的延长线交BC的延长线于点FBE垂直平分AMDGAFMGDE

1)判断四边形DEMG的形状,并说明理由;

2)求证:△ADM≌△FCM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx2ax轴交于点A和点B10),与y轴将于点C0,﹣).

1)求抛物线的解析式;

2)若点D2n)是抛物线上的一点,在y轴左侧的抛物线上存在点T,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;

3)直线ykxk+2,与抛物线交于两点PQ,其中在点P在第一象限,点Q在第二象限,PAy轴于点MQAy轴于点N,连接BMBN,试判断△BMN的形状并证明你的结论.

查看答案和解析>>

同步练习册答案