【题目】外卖小哥骑车从商家出发,向东骑了3千米到达小林家,继续骑2.5千米到达小红家,然后向西骑了10千米到达小明家,最后返回商家。
(1)以商家为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小林家,小红家的位置。(小林家用点A表示,小红家用点B表示,小明家用点C表示)
(2)小明家距小林家______千米
(3)若外卖小哥在骑车过程中每千米耗时3分钟,那么外卖小哥在整个过程中共用时多久?(假设外卖小哥一直在匀速行驶,在每户人家上门送外卖的时间忽略不计)
【答案】(1)如图所示,见解析;(2)是7.5千米;(3) 外卖小哥在整个过程中共用时60分钟.
【解析】
(1)根据题目的叙述1个单位长度表示1千米,可知小明家位置是3,小林家位置是5.5,小红家的位置是-4.5;
(2)根据(1)得到的数轴表示,可得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;
(3)计算出总路程是20千米,乘以每千米耗时3分钟即可求得总时间.
解:(1) 小明家,小林家,小红家的位置如图所示:
(2)根据数轴可知:小明家距小林家是7.5个单位长度,因而是7.5千米;
(3)路程是3+2.5+10+4.5=20(千米),
所用时间是20×3=60(分钟).
答:外卖小哥在整个过程中共用时60分钟.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.
(1)求证:直线CA是⊙O的切线;
(2)若BD=DC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】刚刚升入初一,学习成绩优异但体育一般的王晴同学未雨绸缪,已经为将来的体育中考做起了准备.上周末她在家练习1分钟跳绳,以每分钟150下为基准,超过或不足的部分分别用正负数来表示,8次成绩(单位:下)分别是-10,-8,-5,-2,+2,+8,+3,-4.
(1)成绩最好的一次比最差的一次多跳多少下?
(2)求王晴这8次跳绳的平均成绩.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装厂生产一种围巾和手套,每条围巾的定价为50元,每双手套的定价为20元厂家在开展促销活动期间,向客户提供两种优惠方案:
方案①:买一条围巾送一双手套;
方案②:围巾和手套都按定价的付款.
现某客户要到该服装厂购买围巾20条,手套双().
(1)若该客户按方案①购买,则需付款______元(用含的代数式表示);
若该客户按方案②购买,则需付款______元(用含的代数式表示);
(2)若,通过计算说明按哪种方案购买较便宜.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:
(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;
(2)甲行驶15分钟后,甲、乙两人相距多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线分别于轴、轴交于A、B两点,与直线交于点C(2,4),平行于轴的直线从原点出发,以每秒1个单位长度的速度沿轴向右平移,直线分别交直线AB、直线OC于点D、E,以DE为边向左侧作正方形DEFG,当直线经过点A时停止运动,设直线的运动时间为(秒).
(1)
(2)设线段DE的长度为求与之间的函数关系式;
(3)当正方形DEFG的边GF落在轴上,求出的值;
(4)当时,若正方形DEFG和△OCB重叠部分面积为4,则的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是( )
A. B. AD,AE将∠BAC三等分
C. △ABE≌△ACD D. S△ADH=S△CEG
【答案】A
【解析】试题解析:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA∽△BAC,∴,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC﹣CD=BC﹣AB,则=,即=,故A错误;
∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD,AE将∠BAC三等分,故B正确;
∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,∴∠BAE=∠CAD,在△BAE和△CAD中,∵∠B=∠C,AB=AC,∠BAE=∠CAD,∴△BAE≌△CAD,故C正确;
由△BAE≌△CAD可得S△BAE=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,∴S△BAD=S△CAE,又∵DH垂直平分AB,EG垂直平分AC,∴S△ADH=S△ABD,S△CEG=S△CAE,∴S△ADH=S△CEG,故D正确.
故选A.
【题型】单选题
【结束】
11
【题目】红细胞是人体中血液运输氧气的主要媒介,人体中红细胞的直径约为0.0000077m,将0.0000077用科学记数法表示为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学图书室计划购买了甲、乙两种故事书.若购买7本甲种故事书和4本乙种故事书需510元;购买3本甲种故事书和5本乙种故事书需350元.
(1)求甲种故事书和乙种故事书的单价;
(2)学校准备购买甲、乙两种故事书共200本,且甲种故事书的数量不少于乙种故事书的数量的,请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com