精英家教网 > 初中数学 > 题目详情
3.如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于C点,对称轴与抛物线相交于点M,与x轴相交于点N.点P是线段MN上的一动点,过点P作PE⊥CP交x轴于点E.
(1)直接写出抛物线的顶点M的坐标是(1,4).
(2)当点E与点O(原点)重合时,求点P的坐标.
(3)点P从M运动到N的过程中,求动点E的运动的路径长.

分析 (1)将解析式配成顶点式即可.
(2)当点E与O重合时,设PN=m,过点C作CF⊥MN于F,由△ENP∽△PFC用相似比例建立方程解之即可.
(3)找到左右两个极端位置即可.P在M点时,E在右边最运处,这个时候求出EN为对称轴右边的路径长度;E点在左侧时,设EN=y,PN=x,由△ENP∽△PFC列出比例方程,得到y关于x的二次函数,配方求出最大值,再加上右边路径长度即为总路径长度.

解答 解:(1)∵y=-x2+2x+3=-(x-1)2+4,
∴M(1,4);
(2)当点E与O重合时,EN=1,设PN=m,
过点C作CF⊥MN,垂足为F,如图1,

∵∠EPC=90°,
∴∠EPN+∠NEP=∠EPN+∠CPF=90°,
∴∠CPF=∠PEN,
∴△ENP∽△PFC
∴$\frac{CF}{PF}=\frac{PN}{EN}$,即:$\frac{1}{3-m}=\frac{m}{1}$,
解得:m=$\frac{3±\sqrt{5}}{2}$
∴点P的坐标为:(1,$\frac{3+\sqrt{5}}{2}$)或(1,$\frac{3-\sqrt{5}}{2}$)
(3)①当点P与M重合时,如图2,

由△ENM∽△MFC可知,$\frac{EN}{MN}=\frac{MF}{CF}$,
∴EN=4,
即当点P从M运动到F时,点E运动的路径长EN为4;
②当点P从F运动到N时,点E从点N向左运动到某最远点后,回到点N结束.如图3,

设EN=y,PN=x,
由△ENP∽△PFC可知,$\frac{CF}{PF}=\frac{PN}{EN}$,即:$\frac{1}{3-x}=\frac{x}{y}$,
∴$y=-{x}^{2}+3x=-(x-\frac{3}{2})^{2}+\frac{9}{4}$,
当x=$\frac{3}{2}$时,y有最大值,为$\frac{9}{4}$;
∴E的运动的路径长为:$4+2×\frac{9}{4}=\frac{17}{2}$.

点评 本题考查了二次函数的顶点式,相似三角形的判定与性质,极端原理,配方法求二次函数最值等重要知识点,有一定综合性,第三问稍有一点难度.纵观本题,构造相似,利用线段成比例建立方程是求解关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.1.22222×9-1.33332×4的值是6.3332.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:52014×($\frac{1}{5}$)2015

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一艘渔船向正东航行,渔船上的渔民在A处看见灯塔M在北偏东60°方向,且相距14$\sqrt{3}$km,一段时间后到达B处,在B处看见灯塔M在北偏东30°方向,此时,灯塔M与渔船的距离是(  )
A.7$\sqrt{2}$kmB.14$\sqrt{2}$kmC.7kmD.14km

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程:$\frac{3}{10}$(200+x)-$\frac{2}{10}$(300-x)=300×$\frac{9}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在直角坐标系xoy中,已知抛物线$y=-\frac{{3\sqrt{3}}}{20}({x^2}-\frac{17}{3}x-2)$.
(1)求抛物线与x轴的交点坐标;
(2)记抛物线与x轴的右交点为B,点A(1,$\sqrt{3}$)在抛物线上,P、Q两质点分别从A、B两点同时出发,P质点沿AO方向,行驶速度为a个单位/秒、Q质点沿BO方向,行驶速度为2个单位/秒.
①1秒后,P质点到达M点,Q质点到达N点.若要使△OMN与△OAB相似,P质点的行驶速度可以是多少?
②当P质点到达直线OA与抛物线的另一个交点C时,两质点停止行驶.若P质点的行驶速度与Q质点的相同,
记线段MN的平方(MN2)为点M、N的超级距离、t为行驶时间.当t等于多少秒时,质点P、Q之间的超级距离最小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是(  )
A.BE=CEB.FM=MCC.AM⊥FCD.BF⊥CF

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知$\frac{x}{y}$=$\frac{3}{2}$,那么下列各式不一定成立的是(  )
A.2x=3yB.$\frac{y}{x}$=$\frac{2}{3}$C.$\frac{x}{2}$=$\frac{y}{3}$D.$\frac{x+y}{y}$=$\frac{5}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.计算:-22÷(-3)3=$\frac{4}{27}$.

查看答案和解析>>

同步练习册答案