精英家教网 > 初中数学 > 题目详情
如图,点C、D是以线段AB为公共弦的两条圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是( )
A

试题分析:延长CE交AB于G,△AEG和△FEG都是直角三角形,运用勾股定理列出y与x的函数关系式即可判断出函数图象.
延长CE交AB于G

∵△AEG和△FEG都是直角三角形

,即
这个函数是一个二次函数,抛物线的开口向下,对称轴为x=2,与x轴的两个交点坐标分别是(0,0),(4,0),顶点为(2,4),自变量
所以A选项中的函数图象与之对应.
故选A.
点评:本题为几何与函数相结合的题型,同学们应注意运用勾股定理的重要性,它就是解决此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).

(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;
(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上。B、C点在地面OM线上(如图2所示).为了筹备材料,需测算“脚手架”三根钢杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.

(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数(a≠0),列表如下:
x
……


0

1

2
……
y
……
2

0

0

2
……
(1)根据表格所提供的数据,请你写出顶点坐标___________,对称轴__________。
(2)求出二次函数解析式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S.

(1)求折痕EF的长;
(2)直接写出S与t的函数关系式及自变量t的取 值范围.
(3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y1=-2x2+2与直线y2=2x+2相交
点A和点B,

(1)求出点A和点B的坐标。
(2)观察图象,请直接写出y1>y2的自变量x的取值范围。
(3)当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2
取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.(例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.) 求:使得M=1的x值。=】

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6分)在平面直角坐标系xOy中,二次函数的图象过A(-1,-2)B(1,0)两点.

(1)求此二次函数的解析式;
(2)点x轴上的一个动点,过点Px轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线yax2bxcx轴交于AB两点,与y轴交于点C,其中点Bx轴的正半轴上,点Cy轴的正半轴上,线段OBOC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求ABC三点的坐标;
(2)求此抛物线的表达式;
(3)连接ACBC,若点E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连接CE,设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是       m。

查看答案和解析>>

同步练习册答案