在平面直角坐标系中,已知A、B是抛物线
上两个不同的点,其中A在第二象限,B在第一象限,
(1)如图15-1所示,当直线AB与
轴平行,
AOB=90
,且AB=2时,
求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图15-2所示,在(1)所求得的抛物线上,当直线AB与
轴不平行,
AOB仍为90
时,
A、B两点的横坐标的乘积是否为常数?如果是,请给予证明,如果不是,请说明理由.
(3)在(2)的条件下,若直线
分别交直线AB,y轴于点P、C,直线AB交y轴于点D,
且
BPC=
OCP,求点P的坐标.
![]()
科目:初中数学 来源: 题型:
如图,已知直线
与双曲线
交于A(
),B(
)两点(A与B不重合),
直线AB与
轴交于P(
),与
轴交于点C.
(1) 若A,B两点的坐标分别为(1,3),(3,y2).求点P的坐标;
(2)若
,点
的坐标为(6,0),且
.求
两点的坐标;
(3)结合(1),(2)中的结果,猜想并用等式表示
之间的关系(不要求证明).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图10,在平面直角坐标系中,已知
ABC的三个
顶点的坐标分别为A(-1,1),B(-3,1)C(-1,4).
(1)画出
ABC关于y轴对称的
;
(2)将
ABC绕着点B顺时针旋转90
后得到
,请在图中画出
,并求出线段BC旋转过程中所扫过的面积(结果保留
).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )
A. 至少有1个球是黑球 B.至少有1个球是白球
C. 至少有2个球是黑球 D.至少有2个球是白球
查看答案和解析>>
科目:初中数学 来源: 题型:
为加强公民的节水意识,合理利用水资源。某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于
1︰1.5︰2。下图折线表示实行阶梯水价后每月水费y(元)与用水量xm³之间的函数关系。其中线段AB表示第二级阶梯时y与x之间的函数关系
(1) 写出点B的实际意义;
(2) 求线段AB所在直线的表达式。
(3) 某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com