精英家教网 > 初中数学 > 题目详情

【题目】如图,在长方形ABCD中,AB:BC=3:4,AC=5,点P从点A出发,以每秒1个单位的速度,沿△ABCA→B→C→A的方向运动,运动时间为t秒.

(1)ABBC的长;

(2)在点P的运动过程中,是否存在这样的点P,使△CDP为等腰三角形?若存在,求出t值;若不存在,说明理由.

【答案】(1)AB=3,BC=4;(2)存在;9.5秒或10秒或1.5秒或4秒或10.6.

【解析】

(1)利用因式分解法解出方程即可;

(2)分PC=CD、PD=PC、PD=CD三种情况,根据等腰三角形的性质和勾股定理计算即可.

解:(1)设AB=3x,BC=4x

RtABC中,AB2+BC2=AC2

AC=5x,5x=5,x=1

AB=3,BC=4,

(2)存在点P,使△CDP是等腰三角形,理由如下:

P1D=P1CP为对角线AC中点时,△CDP是等腰三角形,

AB=3,BC=4,

(秒)

CD=P2C时,△CDP是等腰三角形,

(秒),

AB的中点也是,此时t=1.5;

CP=CD,PBC线段上,此时,t=4;

DP=DC,P在线段AC上,此时t=10.6;

综上可知当t=9.5秒或10秒或1.5秒或4秒或10.6秒时△CDP是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图将两条宽度都为3的纸条重叠在一起使ABC=60°则四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.
(1)求改直的公路AB的长;
(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中,计算正确的是(
A.a3?a4=a12
B. =
C.(a+2)2=a2+4
D.(﹣xy)3?(﹣xy)2=xy

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧 (不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为(  )
A.r
B. ?r
C.2r
D. ?r

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=1,有如下结论:
①c<1;
②2a+b=0;
③b2<4ac;
④若方程ax2+bx+c=0的两根为x1 , x2 , 则x1+x2=2.
则正确的结论是(  )

A.①②
B.①③
C.②④
D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰△ABC的顶角∠A=36°(如图).
(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);
(2)通过计算说明△ABD和△BDC都是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2
(1)求点D的坐标,并直接写出t的取值范围.
(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(3)在(2)的条件下,t为何值时,四边形APQF是梯形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为 (即cosC= ),则AC边上的中线长是

查看答案和解析>>

同步练习册答案