精英家教网 > 初中数学 > 题目详情

【题目】阅读下面的材料:

小明同学遇到这样一个问题,如图1AB=AE,∠ABC=EADAD=mAC,点P在线段BC上,∠ADE=ADP+ACB,求的值.

小明研究发现,作∠BAM=AED,交BC于点M,通过构造全等三角形,将线段BC转化为用含AD的式子表示出来,从而求得的值(如图2).

1)小明构造的全等三角形是:_________________

2)请你将小明的研究过程补充完整,并求出的值.

3)参考小明思考问题的方法,解决问题:

如图3,若将原题中“AB=AE”改为“AB=kAE”,“点P在线段BC上”改为“点P在线段BC的延长线上”,其它条件不变,若∠ACB=2α,求:的值(结果请用含αkm的式子表示).

【答案】1;(2;(3.

【解析】

1)根据已知条件直接猜想得出结果;

2)过点于点,易证,再根据结合已知条件得出结果;

3)过点于点,过点,得出,根据相似三角形的性质及已知条件得出,进而求解.

1)解:

2)过点于点

在中

3)解:过点于点

在中

过点

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线yax2+bx+c与直线lykx+mk0)交于A10),B两点,与y轴交于C03),对称轴为直线x2

1)请直接写出该抛物线的解析式;

2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若,且SBAG6,求点G的坐标;

3)若在直线上有且只有一点P,使∠APB90°,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l和双曲线y=(k>0)交于AB两点,P是线段AB上的点(不与AB重合),过点ABP分别向x轴作垂线,垂足分别为CDE,连接OAOBOP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则( )

A.S1S2S3B.S1S2S3C.S1S2S3D.S1S2S3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当地时间2019415日下午,法国巴黎圣母院发生火灾,大火烧毁了巴黎圣母院后塔的塔顶.烧毁前,为测量此塔顶的高度,在地面选取了与塔底共线的两点的同侧,在处测量塔顶的仰角为27°,在处测量塔顶的仰角为45°的距离是89.5米.设的长为米,则下列关系式正确的是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,当线段AB与坐标轴不垂直时,以线段AB为斜边作RtABC,且边BCx轴,则称AC+BC的值为线段AB的直角距离,记作LAB);当线段AB与坐标轴垂直时,线段AB的直角距离不存在.

1)在平面直角坐标系中,A14),B42),求LAB).

2)在平面直角坐标系中,点A与坐标原点重合,点Bxy),且LAB)=2

当点Bxy)在第一象限时,易知ACxBCy.由AC+BCLAB),可得yx之间的函数关系式为   ,其中x的取值范围是   ,在图中画出这个函数的图象.

请模仿的思考过程,分别探究点B在其它象限的情形,仍然在图中分别画出点B在二、三、四象限时,yx的函数图象.(不要求写出探究过程)

3)在平面直角坐标系中,点A11),在抛物线yaxh2+5上存在点B,使得2LAB)≤4

a=﹣时,直接写出h的取值范围.

h0,且△ABC是等腰直角三角形时,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有红、黄两个布袋,红布袋中有两个完全相同的小球,分别标有数字24.黄布袋中有三个完全相同的小球,分别标有数字﹣2,﹣4和﹣6.小贤先从红布袋中随机取出一个小球,记录其标有的数字为x,再从黄布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点M的一个坐标为(xy

1)用列表或画树状图的方法写出点M的所有可能坐标;

2)求点M落在双曲线y上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数和二次函数图象的顶点分别为,与轴分别相交于两点(点在点的左边)和两点(点在点的左边),

     

1)函数的顶点坐标为______;当二次函数值同时随着的增大而增大时,则的取值范围是_______

2)判断四边形的形状(直接写出,不必证明);

3)抛物线均会分别经过某些定点;

①求所有定点的坐标;

②若抛物线位置固定不变,通过平移抛物线的位置使这些定点组成的图形为菱形,则抛物线应平移的距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,是对角线的交点,边上的动点(点不与重合),过点垂直于点,连结.下列四个结论:①;②;③;④若,则的最小值是1.其中正确结论是(

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示

(1)求证:△ABE≌△ADF;

(2)试判断四边形AECF的形状,并说明理由.

查看答案和解析>>

同步练习册答案