【题目】如图,已知二次函数:和二次函数:图象的顶点分别为、,与轴分别相交于、两点(点在点的左边)和、两点(点在点的左边),
(1)函数的顶点坐标为______;当二次函数,的值同时随着的增大而增大时,则的取值范围是_______;
(2)判断四边形的形状(直接写出,不必证明);
(3)抛物线,均会分别经过某些定点;
①求所有定点的坐标;
②若抛物线位置固定不变,通过平移抛物线的位置使这些定点组成的图形为菱形,则抛物线应平移的距离是多少?
【答案】(1),;(2)四边形是矩形;(3)①所有定点的坐标,经过定点或,经过定点或;②抛物线应平移的距离是或.
【解析】
(1)将已知抛物线解析式转化为顶点式,直接得到点M的坐标;结合函数图象填空;
(2)利用抛物线解析式与一元二次方程的关系求得点A、D、M、N的横坐标,可得AD的中点为(1,0),MN的中点为(1,0),则AD与MN互相平分,可证四边形AMDN是矩形;
(3)①分别将二次函数的表达式变形为和,通过表达式即可得出所过定点;
②根据菱形的性质可得EH1=EF=4即可,设平移的距离为x,根据平移后图形为菱形,由勾股定理可得方程即可求解.
解:(1),顶点坐标为,
由图象得:当时,二次函数,的值同时随着的增大而增大.
故答案为:;;
(2)结论:四边形是矩形.
由二次函数和二次函数解析式可得:
点坐标为,,点坐标为,,
顶点坐标为,顶点坐标为,
的中点为,的中点为,
与互相平分,
四边形是平行四边形,
又,
∴□是矩形;
(3)①二次函数,
故当或时,即二次函数经过、两点,
二次函数,
故当或时,即二次函数经过、两点,
②二次函数经过、两点,二次函数经过、两点,
如图:四个定点分别为、,、,则组成四边形为平行四边形,
∴FH⊥HG,FH=2,HM=4-x,
设平移的距离为,根据平移后图形为菱形,
则EH1=EF=H1M=4,
由勾股定理可得:FH2+HM2=FM2,
即,
解得:,
抛物线位置固定不变,通过左右平移抛物线的位置使这些定点组成的图形为菱形,则抛物线应平移的距离是或.
科目:初中数学 来源: 题型:
【题目】中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.
(1)这次统计共抽取了 位同学,扇形统计图中的 ,的度数是 ;
(2)请将条形统计图补充完整;
(3)估计全校共多少学生参加了球类运动.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABO是正三角形,CD∥AB,把△ABO绕△OCD的内心P旋转180°得到△EFG
(1)在图中画出点P和△EFG,保留画图痕迹,简要说明理由
(2)若AO=3,CD=2,求A点运动到E点路径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
小明同学遇到这样一个问题,如图1,AB=AE,∠ABC=∠EAD,AD=mAC,点P在线段BC上,∠ADE=∠ADP+∠ACB,求的值.
小明研究发现,作∠BAM=∠AED,交BC于点M,通过构造全等三角形,将线段BC转化为用含AD的式子表示出来,从而求得的值(如图2).
(1)小明构造的全等三角形是:_________≌________;
(2)请你将小明的研究过程补充完整,并求出的值.
(3)参考小明思考问题的方法,解决问题:
如图3,若将原题中“AB=AE”改为“AB=kAE”,“点P在线段BC上”改为“点P在线段BC的延长线上”,其它条件不变,若∠ACB=2α,求:的值(结果请用含α,k,m的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,等边三角形OAB的一条边OB在x轴的正半轴上,点A在双曲线y=(k≠0)上,其中点B为(2,0).
(1)求k的值及点A的坐标
(2)△OAB沿直线OA平移,当点B恰好在双曲线上时,求平移后点A的对应点A’的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.
(1)求证:DF是⊙O的切线;
(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
求楼间距AB;
若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】白天,小明和小亮在阳光下散步,小亮对小明说:“咱俩的身高都是已知的.如果量出此时我的影长,那么我就能求出你此时的影长.”晚上,他们二人有在路灯下散步,小明想起白天的事,就对小亮说“如果量出此时我的影长,那么我就能求出你此时的影长”.你认为小明、小亮的说法有道理吗?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com