【题目】如图,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.
(1)求∠DBC的度数.
(2)若△DBC的周长为14cm,BC=5cm,求AB的长.
【答案】(1)∠DBC=30°;(2)AB=9cm.
【解析】
(1)根据等腰三角形的性质、三角形内角和定理得到∠ABC=∠ACB=70°,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质计算即可;
(2)根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算,得到答案.
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵∠A=40°,
∴∠ABC=∠ACB=70°,
∵MN是AB的垂直平分线,
∴DA=DB,
∴∠A=∠ABD=40°,
∴∠DBC=∠ABC﹣∠ABD=70﹣40°=30°;
(2)∵MN是AB的垂直平分线,
∴BD=AD,
∵△DBC的周长为14cm,
∴BD+BC+CD=14cm,
∵BC=5cm,
∴BD+CD=AD+CD=AC=9cm,
∵AB=AC,
∴AB=9cm.
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A、B两点.
(1)利用图中条件,求两个函数的解析式;
(2)根据图象写出使y1>y2的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.
(1)求证:AB是⊙O的切线;
(2)若CF=4,DF=,求⊙O的半径r及sinB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.
(1)当每个纪念品定价为3.5元时,商店每天能卖出________件;
(2)如果商店要实现每天800元的销售利润,那该如何定价?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com