精英家教网 > 初中数学 > 题目详情

【题目】甲,乙两人分别从两地相向而行,甲先走3分钟后乙才开始行走,甲到达地后立即停止,乙到达地后立即以另一速度返回地,在整个行驶的过程中,两人保持各自速度匀速行走,甲,乙两人之间的距离(米)与乙出发的时间(分钟)的函数关系如图所示.当甲到达地时,则乙距离地的时间还需要________分钟.

【答案】11

【解析】

在乙出发后18分钟两车相遇,两车相遇后,又经过32-18=14分钟,两车之间的距离达到最大1400米,可以求出两车的速度和为:1400÷32-18=100/分,说明此时乙车已到A地,于是可以得到:甲从开始到第一次相遇地点用时3+18=21分,而乙用14分,因此甲的速度是乙的,根据速度和是100/分,可求出乙车的速度为60/分,甲车速度为40/分;AB两地的路程为:60×32=1920米,当乙到A地时,甲距B地还有1920-1400=520米,因此甲到B地需要520÷40=13分,乙以另一速度返回13秒走的路程1920-880=1040米,所以返回速度为1040÷13=80米,到B地还要880÷80=11分.

解:两车的速度和为:1400÷32-18=100/分,
甲从开始到第一次相遇地点用时3+18=21分,而乙相遇后只用14分,因此甲的速度是乙的
甲速度为100×=40/分,乙的速度为100×=60/分,
AB两地的路程为:60×32=1920米,
当乙到A地时,甲距B地还有1920-1400=520米,
因此甲到B地需要520÷40=13分,
乙以另一速度返回13秒走的路程1920-880=1040米,
所以返回速度为1040÷13=80米,
B地还要880÷80=11分.
故答案为:11

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点ECD的中点,AF平分∠BAEBC于点F,将△ADE绕点A顺时针旋转90°△ABG,则CF的长为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是平行四边形,OB=OC=2AB=.

(1)求点D的坐标,直线CD的函数表达式;

(2)已知点P是直线CD上一点,当点P满足SPAO=SABO时,求点P的坐标;

(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F(不与AB重合),使以A C FM为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一、阅读材料:

已知实数mn满足(2m2n21)(2m2n21=80,试求2m2n2的值.

解:设2m2n2=t,则原方程变为(t1)(t1=80,整理得t21=80t2=81,所以t=9,因为2m2n20,所以2m2n2=9

二、方法归纳:

上面这种方法称为“     法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.

三、探索实践:

根据以上阅读材料内容,解决下列问题,并写出解答过程.

1)已知实数xy,满足(2x22y23)(2x22y23=27,求x2y2的值.

2)已知RtACB的三边为abcc为斜边),其中ab满足(a2b2)(a2b24=5,求RtACB外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】闺蜜装在大学校园里盛行,闺蜜装能很好的表达亲如姐妹的友谊,也能成为校园一道靓丽的风景.某专卖店购进一批两款闺蜜装,共花费了18400元,款比款多20套,其中每套款闺蜜装进价200元,每套款闺蜜装进价160.进行试销售,供不应求,很快销售完毕,己知每套款闺蜜装售价为240.

1)求购进两款闺蜜装各多少套?

2)国庆将至,专卖店又购进第二批两款闺蜜装并进行促销活动,在促销期间,每套款闺蜜装在进价的基础上提高销售,每套款闺蜜装在第一批售价的基础上降低销售,结果在促销售活动中,款闺蜜装的销量比第一批款销售量降低了款闺蜜装的销售量比第一批款销售量上升了,结果本次促销活动共获利5200元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】)甲乙两人在相同条件下完成了5次射击训练,两人的成绩如图所示.

1)甲射击成绩的众数为 环,乙射击成绩的中位数为 环;

2)计算两人射击成绩的方差;

3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为2O到定点A的距离为5,点B在⊙O上,点P是线段AB的中点.若B在⊙O上运动一周:

1)证明点P运动的路径是一个圆.

(思路引导:要证点P运动的路径是一个圆,只要证点P到定点M的距离等于定长r,由图中的定点、定长可以发现Mr.)

2)△ABC始终是一个等边三角形,直接写出PC长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB x轴上 OA=2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为___________

查看答案和解析>>

同步练习册答案