【题目】甲,乙两人分别从,两地相向而行,甲先走3分钟后乙才开始行走,甲到达地后立即停止,乙到达地后立即以另一速度返回地,在整个行驶的过程中,两人保持各自速度匀速行走,甲,乙两人之间的距离(米)与乙出发的时间(分钟)的函数关系如图所示.当甲到达地时,则乙距离地的时间还需要________分钟.
【答案】11
【解析】
在乙出发后18分钟两车相遇,两车相遇后,又经过32-18=14分钟,两车之间的距离达到最大1400米,可以求出两车的速度和为:1400÷(32-18)=100米/分,说明此时乙车已到A地,于是可以得到:甲从开始到第一次相遇地点用时3+18=21分,而乙用14分,因此甲的速度是乙的,根据速度和是100米/分,可求出乙车的速度为60米/分,甲车速度为40米/分;AB两地的路程为:60×32=1920米,当乙到A地时,甲距B地还有1920-1400=520米,因此甲到B地需要520÷40=13分,乙以另一速度返回13秒走的路程1920-880=1040米,所以返回速度为1040÷13=80米,到B地还要880÷80=11分.
解:两车的速度和为:1400÷(32-18)=100米/分,
甲从开始到第一次相遇地点用时3+18=21分,而乙相遇后只用14分,因此甲的速度是乙的,
甲速度为100×=40米/分,乙的速度为100×=60米/分,
∴AB两地的路程为:60×32=1920米,
当乙到A地时,甲距B地还有1920-1400=520米,
因此甲到B地需要520÷40=13分,
乙以另一速度返回13秒走的路程1920-880=1040米,
所以返回速度为1040÷13=80米,
到B地还要880÷80=11分.
故答案为:11
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是平行四边形,OB=OC=2,AB=.
(1)求点D的坐标,直线CD的函数表达式;
(2)已知点P是直线CD上一点,当点P满足S△PAO=S△ABO时,求点P的坐标;
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F(不与A、B重合),使以A、 C、 F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)已知:ABCD的两边AB,AD的长是关于x的方程的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一、阅读材料:
已知实数m,n满足(2m2+n2+1)(2m2+n2-1)=80,试求2m2+n2的值.
解:设2m2+n2=t,则原方程变为(t+1)(t-1)=80,整理得t2-1=80,t2=81,所以t=土9,因为2m2+n2>0,所以2m2+n2=9.
二、方法归纳:
上面这种方法称为“ 法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.
三、探索实践:
根据以上阅读材料内容,解决下列问题,并写出解答过程.
(1)已知实数x、y,满足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三边为a、b、c(c为斜边),其中a、b满足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】闺蜜装在大学校园里盛行,闺蜜装能很好的表达“亲如姐妹”的友谊,也能成为校园一道靓丽的风景.某专卖店购进一批,两款闺蜜装,共花费了18400元,款比款多20套,其中每套款闺蜜装进价200元,每套款闺蜜装进价160元.进行试销售,供不应求,很快销售完毕,己知每套款闺蜜装售价为240元.
(1)求购进,两款闺蜜装各多少套?
(2)国庆将至,专卖店又购进第二批,两款闺蜜装并进行促销活动,在促销期间,每套款闺蜜装在进价的基础上提高销售,每套款闺蜜装在第一批售价的基础上降低销售,结果在促销售活动中,款闺蜜装的销量比第一批款销售量降低了,款闺蜜装的销售量比第一批款销售量上升了,结果本次促销活动共获利5200元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】)甲乙两人在相同条件下完成了5次射击训练,两人的成绩如图所示.
(1)甲射击成绩的众数为 环,乙射击成绩的中位数为 环;
(2)计算两人射击成绩的方差;
(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为2,O到定点A的距离为5,点B在⊙O上,点P是线段AB的中点.若B在⊙O上运动一周:
(1)证明点P运动的路径是一个圆.
(思路引导:要证点P运动的路径是一个圆,只要证点P到定点M的距离等于定长r,由图中的定点、定长可以发现M、r.)
(2)△ABC始终是一个等边三角形,直接写出PC长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB 在 x轴上,若 OA=2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com