【题目】如图是一个汉字“互”字,其中,AB∥CD,∠1=∠2,∠MGH=∠MEF.
求证:∠MEF=∠GHN.
证明:∵ AB∥CD(已知)
∴∠1=∠3( )
又∵∠1=∠2(已知)
∴∠2=∠3( )
∴ME∥HN ( )
∴∠MGH=∠ ( )( )
又∵∠MGH=∠MEF (已知)
∴∠MEF=∠GHN( )
科目:初中数学 来源: 题型:
【题目】在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是( )
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.
(1)①在“平行四边形、矩形、菱形”中, 一定是等角线四边形(填写图形名称);
②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD.DA的中点,当对角线AC、BD还要满足 时,四边形MNPQ是正方形.
(2)如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.
①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是 ;
②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段、折线分别表示两车离甲地的距离(单位:千米)与时间(单位:小时)之间的函数关系.
(1)线段与折线中,______(填线段或折线)表示货车离甲地的距离与时间之间的函数关系.
(2)求线段的函数关系式(标出自变量取值范围);
(3)货车出发多长时间两车相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,长方形的三个顶点的坐标为,,,且轴,点是长方形内一点(不含边界).
(1)求,的取值范围.
(2)若将点向左移动8个单位,再向上移动2个单位到点,若点恰好与点关于轴对称,求,的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线与y轴交于点A(0,﹣4),与x轴相交于B(﹣2,0)、C(4,0)两点,O为坐标原点.
(1)求抛物线的解析式;
(2)设点E在x轴上,∠OEA+∠OAB=∠ACB,求BE的长;
(3)如图2,将抛物线y=ax2+bx+c向右平移n(n>0)个单位得到的新抛物线与x轴交于M、N(M在N左侧),P为x轴下方的新抛物线上任意一点,连PM、PN,过P作PQ⊥MN于Q,是否为定值?请说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.
(1)如图1,若点E在线段BC上,求CF的长;
(2)求sin∠DAB1的值;
(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com