【题目】在平整的地面上,由若干个完全相同的棱长为 10 cm 的小正方体堆成一个几何体,如图 所示.
(1)这个几何体由多少个小正方体组成?请画出这个几何体的三视图.
(2)如果在这个几何体的表面(不包括底面)喷上黄色的漆,则在所有的小正方体中,有多少个只有一个面是黄色?有多少个只有两个面是黄色?有多少个只有三个面是黄色?
(3)假设现在你手里还有一些相同的小正方体,保持这个几何体的主视图、俯视图形状 不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面(不包括底面) 喷上红色的漆,需要喷漆的面积比原几何体增加了还是减少了?增加或减少的面积是 多少?
【答案】见解析
【解析】
(1)观察所给的几何体可得,从左往右三列小正方体的个数依次为:6,2,2,相加即可;根据三视图的定义画出图形即可;(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个;(3)保持主视图和俯视图不变,可往第一列前面的几何体上放2个小正方体,中间的几何体上放1个小正方体,由原几何体需喷32个面,新几何体需喷38个面计算即可解答.
(1)10,这个几何体的三视图如图所示:
;
(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共1个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个;
(3)最多可以再添加3个小正方体,原几何体需喷32个面,新几何体需喷38个面,所以需喷漆的面积增加了,增加了6×10×10=600(cm2).
科目:初中数学 来源: 题型:
【题目】为丰富学生的课余活动,陶冶学生的情趣和爱好,某校开展了学生社团活动,为了解学生各类活动的参加情况,该校对七年级学生社团活动进行了抽样调查,制作出如下的统计图:
根据上述统计图,完成以下问题:
该校参加艺术类的社团学生中,女生人数是男生人数的倍,现该校共有学生名,请估算该校参加艺术类社团中女生有________人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表给出了某班6名同学的身高情况(单位:cm).
学生 | A | B | C | D | E | F | |
身高(单位:cm) | 165 | ____ | 166 | ____ | ____ | 172 | |
身高与班级平 | 均身高的差值) | -1 | +2 | ____ | -3 | +4 | ____ |
(1)完成表中空的部分;
(2)他们6人中最高身高比最矮身高高多少?
(3)如果身高达到或超过平均身高时叫达标身高,那么这6名同学身高的达标率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从表可知,
①抛物线与x轴的交点为;
②抛物线的对称轴是;
③函数y=ax2+bx+c的最大值为;
④x , y随x增大而增大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE逆时针旋转90°,设点E的对应点为F.
(1)画出旋转后的三角形.
(2)在(1)的条件下,
①求EF的长;
②求点E经过的路径弧EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,D是BA延长线上一点,AE是∠DAC的平分线,P是AE上的一点(点P不与点A重合),连接PB,PC.通过观察,测量,猜想PB+PC与AB+AC之间的大小关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有( )
A. 5个 B. 4个 C. 3个 D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4.点D是AB边上任意一点,则CD的最小值为 。
(2)如图②,在矩形ABCD中,AB=3,BC=4.点M、N分别在BD、BC上。求CM+MN的最小值.
(3)如图③,在矩形ABCD中,AB=3,BC=4.点E是AB边上的一点,且AE=2,点F是BC边上的任意一点。把△BEF沿EF翻折,点B对应点G,连接AG、CG.四边形AGCD的面积的最小值是 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com