精英家教网 > 初中数学 > 题目详情

【题目】如图,BE⊙O的直径,点AEB的延长线上,弦PD⊥BE,垂足为C,连接OD

∠AOD=∠APC

1)求证:AP⊙O的切线;

2)若⊙O的半径是4AP=4,求图中阴影部分的面积.

【答案】1)证明详见解析;(2

【解析】

1)连接OP,证明OPAP,利用等腰三角形的性质和直角三角形的性质证明即可;(2)根据扇形POD面积减去△OPD的面积即为阴影部分的面积,求出相关数据代入计算.

1)证明:连结OP,PDBE,如图.

∴∠OCD=90°,

∴∠ODC+COD=90°,

OD=OP

∴∠ODC=OPC

∵∠COD=APC

∴∠OPC+APC=90°,

∴∠APO=90°,APPO

P在⊙O,AP是⊙O的切线.

2)在RtAPO中,tanAOP=

∴∠AOP=60°,∴∠OPC=30°,

OC=2,∴PC=

PD=

OD=OPOBPD

∴∠POB=COD=60°,

∴∠POD=120°,

∴阴影部分面积为: .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+cx轴交于AD两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(10),点B的坐标为(04),已知点Em0)是线段DO上的动点,过点EPEx轴交抛物线于点P,交BC于点G,交BD于点H

1)求该抛物线的解析式;

2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

3)在(2)的条件下,是否存在这样的点P,使得以PBG为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+ca≠0abc为常数)上部分点的横坐标x,纵坐标y的对应值如下表:

x

……

3

2

1

0

1

2

……

y

……

4

4

m

0

……

则下列结论中:①抛物线的对称轴为直线x=﹣1;②m;③当﹣4x2时,y0;④方程ax2+bx+c40的两根分别是x1=﹣2x20,其中正确的个数有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(21)B(1-2)C(3-1)P(mn)是△ABC的边AB上一点.

(1)画出△A1B1C1,使△A1B1C1与△ABC关于点O成中心对称,并写出点AP的对应点A1P1的坐标.

(2)以原点O为位似中心,位似比为12,在y轴的左侧,画出将△A1B1C1放大后的△A2B2C2,并分别写出点A1P1的对应点A2P2的坐标.

(3)sinB2A2C2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc中,自变量x与函数y之间的部分对应值如下表:

在该函数的图象上有Ax1y1)和Bx2y2)两点,且-1x103x24y1y2的大小关系正确的是(

A.y1≥y2B.y1y2C.y1≤y2D.y1y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,且,顶点为

1)求二次函数的解析式;

2)点为线段上的一个动点,过点轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;

3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,

(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1

(2)以点A为对称中心,请画出 AOB关于点A成中心对称的 A O2 B2,并写点B2的坐标;

(3)以原点O为旋转中心,请画出把AOB按顺时针旋转90°的图形A2 O B3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,C04),Ax轴上一动点,连接AC,将ACA点顺时针旋转90°得到AB,当点Ax轴上运动时,OB+BC的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)求AOB的面积;

(3)观察图象,直接写出不等式kx+b﹣>0的解集.

查看答案和解析>>

同步练习册答案