精英家教网 > 初中数学 > 题目详情

【题目】某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行喷药消毒,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?

【答案】甲单独完成该工作需小时,乙单独完成该工作需15小时

【解析】

设甲单独完成该工作需x小时,则可得出甲的工作效率为,乙的工作效率为,根据甲单独做4小时后,剩下的乙单独做还需9小时完成,列出方程,解出即可;

解:甲单独完成该工作需x小时,

由题意得,

解得:

经检验是原方程的解,

则乙的工作效率为

乙单独完成该工作需1÷=15小时

答:甲单独完成该工作需小时,乙单独完成该工作需15小时.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.

(1)求一次函数y=kx+b的关系式;

(2)结合图象,直接写出满足kx+b>的x的取值范围;

(3)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=6AB⊥BCAD⊥CD∠BAD=60°,点MN分别在ABAD边上,若AMMB=ANND=12,则tan∠MCN=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知内接于的直径,,交的延长线于点

(1)的中点,连结,求证:的切线.

(2),求的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.

(1)等边三角形“內似线”的条数为   

(2)如图,ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是ABC的“內似线”;

(3)在RtABC中,C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是ABC的“內似线”,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.

(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2

(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:

命中环数

7

8

9

10

甲命中相应环数的次数

2

2

0

1

乙命中相应环数的次数

1

3

1

0

(1)求甲、乙两人射击成绩的平均数;

(2)甲、乙两人中,谁的射击成绩更稳定些?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点上,于点于点,当时,________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB为直角边作等腰RtABC,CAB=90°,AB=AC.

(1)求C点坐标;

(2)如图过C点作CDX轴于D,连接AD,求ADC的度数;

(3)如图在(1)中,点A在Y轴上运动,以OA为直角边作等腰RtOAE,连接EC,交Y轴于F,试问A点在运动过程中SAOB:SAEF的值是否会发生变化?如果没有变化,请直接写出它们的比值   (不需要解答过程或说明理由).

查看答案和解析>>

同步练习册答案