精英家教网 > 初中数学 > 题目详情

【题目】如图,某中学在教学楼前新建了一座雕塑.为了测量雕塑的高度,小明在二楼找到一点,利用三角尺测得雕塑顶端点的仰角为,底部点的俯角为,小华在五楼找到一点,利用三角尺测得点的俯角为.若,则雕塑的高度为________.(结果精确到,参考数据:).

【答案】

【解析】

CCE⊥AB,垂足是E,根据题意可知△DAC是直角三角形,在Rt△DAC中利用三角函数求得AC的长,在Rt△ACE中利用三角函数求得AE的长和CE的长,△CNB,根据∠ECB=45°可知CE=BE,根据AB=AE+BE即可求解.

如图CCE⊥AB,垂足是E,

∵∠ACE=30°,

∴∠ACD=60°,

∵∠ADC=30°,

∴△ACD是直角三角形,

∴AC=9.6=4.8m,

∴AE=4.8=2.4m,CE=4.8cos30°=2.4 m,

∵∠ECB=45°

∴CE=BE,

∴AB=AE+BE=2.4+2.4 6.6m,

故答案为:6.6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+m与双曲线y=相交于A,B两点,BCx轴,ACy轴,则△ABC面积的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,线段长为为线段上两动点,右侧且,则由的路径:的最小值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形中,对角线交于点上点,且上点,上点,且,并与相交于点

求证:

,求的长.(结果用表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把大小和形状完全相同的张卡片分成两组,每组张,分别标上,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.

请用画树状图的方法求取出的两张卡片数字之和为奇数的概率;

若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N

(1)求证:CM=CN;

(2)若CMN的面积与CDN的面积比为3:1,且CD=4,求线段MN的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点AC的坐标分别为(-43)、(-11).

1)请在如图所示的网格平面内作出平面直角坐标系;

2)请作出关于y对称的△A′B′C′

3)写出点的坐标 的面积为

4)若在y轴上有点M,则能使ABM的周长最小的点M的坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市积极开展阳光体育进校园活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目,为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.

(1)请计算最喜欢B项目的人数所占的百分比.

(2)请计算D项所在扇形图中的圆心角的度数.

(3)请把统计图补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,DEACE.

(1)求证:DE为⊙O的切线;

(2)GED上一点,连接BE交圆于F,连接AF并延长交EDG.若GE=2,AF=3,求EF的长.

查看答案和解析>>

同步练习册答案