【题目】某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标,,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:
注“●”表示患者,“▲”表示非患者.
根据以上信息,回答下列问题:
(1)在这40名被调查者中,
①指标低于0.4的有 人;
②将20名患者的指标的平均数记作,方差记作,20名非患者的指标的平均数记作,方差记作,则 , (填“>”,“=”或“<”);
(2)来该院就诊的500名未患这种疾病的人中,估计指标低于0.3的大约有 人;
(3)若将“指标低于0.3,且指标低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.
【答案】(1)①9;② <,>;(2)100;(3)0.25
【解析】
(1)①直接统计指标低于0.4的有人的个数即可;
②通过观察图表估算出指标、的平均数,然后再进行比较即可确定平均数的大小;根据点的分散程度可以确定方差的大小关系.
(2)先估算出样本中未患这种疾病的人中指标低于0.3的概率,然后500乘以该概率即可;
(3)通过观察统计图确定不在“指标低于0.3,且指标低于0.8”范围内且患病的人数,最后用概率公式求解即可.
解:(1)①经统计指标低于0.4的有9人 ,故答案为9;
②观察统计图可以发现,大约在0.3左右,大约在0.6左右,故<;
观察图表可以发现,x指标的离散程度大于y指标,故>;
故答案为<、>;
(2)由统计图可知:在20名未患病的样本中,指标低于0.3的大约有4人,则概率为;所以的500名未患这种疾病的人中,估计指标低于0.3的大约有500×=100人.
故答案为100;
(3)通过统计图可以发现有五名患病者没在“指标低于0.3,且指标低于0.8”,漏判;则被漏判的概率为=0.25.
答:被漏判的概率为0.25.
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,A,B,C均为格点.
(1)的面积等于;
(2)请用无刻度的直尺,在如图所示的网格中画出的角平分线BD,并在AB边上画出点P,使得,并简要说明的角平分线BD及点P的位置是如何找到的(不要求证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,结合题意写出当x取何值时,商场获利润不少于2160元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标,,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:
注“●”表示患者,“▲”表示非患者.
根据以上信息,回答下列问题:
(1)在这40名被调查者中,
①指标低于0.4的有 人;
②将20名患者的指标的平均数记作,方差记作,20名非患者的指标的平均数记作,方差记作,则 , (填“>”,“=”或“<”);
(2)来该院就诊的500名未患这种疾病的人中,估计指标低于0.3的大约有 人;
(3)若将“指标低于0.3,且指标低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人开车从家出发去植物园游玩,设汽车行驶的路程为S(千米),所用时间为t(分),S与t之间的函数关系如图所示.若他早上8点从家出发,汽车在途中停车加油一次,则下列描述中,不正确的是( )
A.汽车行驶到一半路程时,停车加油用时10分钟
B.汽车一共行驶了60千米的路程,上午9点5分到达植物园
C.加油后汽车行驶的速度为60千米/时
D.加油后汽车行驶的速度比加油前汽车行驶的速度快
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.
(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.
求证:∠EAB=∠GHC;
(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.
①依题意补全图形;
图1 备用图
②用等式表示线段AE与CN之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O的内接三角形,直径AB垂直于弦CG,垂足为点H,过点C作ED⊥CG,交⊙O于点E,且∠CBD=∠A,连接BE,交CG于点F.
(1)求证:BD是⊙O的切线;
(2)求证:BC2=BF·BE;
(3)若CG=8,AB=10,求sin E的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,半径为2的从点开始(如图①)沿直线向右滚动,滚动时始终与直线相切(切点为),当与只有一个公共点时滚动停止.作于点.
(1)图①中,在边上截得的弦长______;
(2)当圆心落在上时,如图②,判断与的位置关系,请说明理由;
(3)在滚动过程中,线段的长度随之变化,设,,求出与之间的函数关系式,并直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与x轴、y轴相交于点B、C,经过点B、C的抛物线与x轴的另一个交点为A(-1,0).
(1)求这个抛物线的表达式;
(2)已知点D在抛物线上,且横坐标为2,求出△BCD的面积;
(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com