精英家教网 > 初中数学 > 题目详情

【题目】二次函数yax2+bx+c(abc为常数,且a≠0)xy的部分对应值如下表:

有下列结论:①a0;②4a2b+10;③x=﹣3是关于x的一元二次方程ax2+(b1)x+c0的一个根;④当﹣3≤x≤n时,ax2+(b1)x+c≥0.其中正确结论的个数为( )

A. 4B. 3C. 2D. 1

【答案】B

【解析】

根据表中xy的部分对应值画出抛物线的草图,由开口方向即可判断①,由对称轴x=﹣1可得b2a,代入4a2b+1可判断②,根据直线yx过点(3,﹣3)(nn)可知直线yx与抛物线yax2+bx+c交于点(3,﹣3)(nn),即可判断③,根据直线yx与抛物线在坐标系中位置可判断④.

解:根据表中xy的部分对应值,画图如下:

由抛物线开口向上,得a0,故①正确;

∵抛物线对称轴为x=﹣1,即﹣=﹣1

b2a

4a2b+14a4a+110,故②正确;

∵直线yx过点(3,﹣3)(nn)

∴直线yx与抛物线yax2+bx+c交于点(3,﹣3)(nn)

x=﹣3xn是方程ax2+bx+cx,即ax2+(b1)x+c0的两个实数根,故③正确;

由图象可知当﹣3≤x≤n时,直线yx位于抛物线yax2+bx+c上方,

x≥ax2+bx+c

ax2+(b1)x+c≤0,故④错误;

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示是二次函数yax2+bx+ca0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b2a0,②4a2b+c0,③ab+c=﹣9a,④若(﹣3y1),(y2)是抛物线上的两点,则y1y2.其中正确的是(  )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABD是O的内接三角形,E是弦BD的中点,点C是O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.

(1)求证:BC是O的切线;

(2)若O的半径为6,BC=8,求弦BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在长方形ABCD中,AB=12cm,BC=10cm,点PA出发,沿A→B→C→D的路线运动,到D停止;点QD点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒lcm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.

(1)求出a值;

(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;

(3)P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,钝角ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.

(1)求证:EFAC.

(2)连结DF,若∠ABC=30°,且DFBC,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,ABAC,MBC边的中点,MNBCAC于点N,动点P在线段BA上以每秒cm的速度由点B向点A运动.同时,动点Q在线段AC上由点N向点C运动,且始终保持MQMP.一个点到终点时两个点同时停止运动,设运动的时间为t秒(t0).

(1)求证:△PBM∽△QNM.

(2)若∠ABC=60°,AB=4cm,

①求动点Q的运动速度;

②设△APQ的面积为S(cm2),求St的等量关系式(不必写出t的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的布袋中装有三个小球,小球上分别标有数字-2、l、2,它们除了数字不同外,其它都完全相同.

(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字l的小球的概率为 .

(2)小红先从布袋中随机摸出一个小球,记下数字作为的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为的值,请用树状图或表格列出的所有可能的值,并求出直线不经过第四象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1A2B2C2D2A3B3C3D3…每个正方形四条边上的整点的个数.按此规律推算出正方形A10B10C10D10四条边上的整点共有______个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有0102030的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.

1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;

2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

查看答案和解析>>

同步练习册答案