【题目】如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为___.
【答案】
【解析】
如图,连接AB,作DE⊥OB于E,根据矩形是中心对称图形可得D是AB的中点,继而求出点D的坐标,D(3,2),设反比例函数的解析式为,利用待定系数法求出反比例函数的解析式,然后根据点MM的纵坐标和A的纵坐标相同,继而可求得点M的横坐标,由此即可得答案.
如图,连接AB,作DE⊥OB于E,
∴DE∥y轴,
∵D是矩形AOBC的中心,
∴D是AB的中点,
∴DE是△AOB的中位线,
∵OA=4,OB=6,
∴DE=OA=2,OE=OB=3,
∴D(3,2),
设反比例函数的解析式为,
∴,
∴反比例函数的解析式为,
∵AM∥x轴,
∴M的纵坐标和A的纵坐标相等为4,
把y=4代入,得4=,解得:x=,
∴M点的横坐标为,
∴点M的坐标为,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图所示,一次函数y=﹣x﹣6与x轴,y轴分别交于点A,B将直线AB沿y轴正方向平移与反比例函数y=(x>0)的图象分别交于点C,D,连接BC交x轴于点E,连接AC,已知BE=3CE,且S△ABE=27.
(1)求直线AC和反比例函数的解析式;
(2)连接AD,求△ACD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l:y=x+1与y轴交于点A,与双曲线(x>0)交于点B(2,a).
(1)求a,k的值.
(2)点P是直线l上方的双曲线上一点,过点P作平行于y轴的直线,交直线l于点C,过点A作平行于x轴的直线,交直线PC于点D,设点P的横坐标为m.
①若m=,试判断线段CP与CD的数量关系,并说明理由;②若CP>CD,请结合函数图象,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.
(1)你认为小玲和小强的说法对吗?
(2)请根据小玲和小强的测量数据计算树的高度;
(3)要是没有台阶遮挡的话,树的影子长度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数______.
(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y= (x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.
(1)填空:反比例函数的解析式为____________________,直线AC的解析式为____________________,B点的坐标是________.
(2)在平面内有点D,使得以A,B,C,D四点为项点的边形为平行四边形.
①在图中用直尺和2B铅笔画出所有符合条件的平行四边形;
②根据所画形,请直接写出符合条件的所有点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是某品牌台灯竖直摆放在水平桌面上的侧面示意图,其中为桌面(台灯底座的厚度忽略不计),台灯支架与灯管的长度都为,且夹角为(即),若保持该夹角不变,当支架绕点顺时针旋转时,支架与灯管落在位置(如图2所示),则灯管末梢的高度会降低_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线表达式C:, 已知点A(0,2),点P是抛物线上一点,若Rt△AOP有一个锐角正切值为,则点P的坐标_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E为BC边上任意点,AF平分∠EAD,交CD于点F.
(1)如图1,若点F恰好为CD中点,求证:AE=BE+2CE;
(2)在(1)的条件下,求的值;
(3)如图2,延长AF交BC的延长线于点G,延长AE交DC的延长线于点H,连接HG,当CG=DF时,求证:HG⊥AG.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com