【题目】如图,在四边形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,点E为BC的中点.
(1)求四边形ABCD的面积;
(2)若AE⊥BC,求CD的长.
【答案】(1)S=4;(2).
【解析】
(1)作辅助线,构建三角形全等,将四边形ABCD的面积转化为三角形DAF的面积来解答;(2)连接AC,设CD=x,根据勾股定理列方程可解答.
解:(1)如图1,连接DE并延长,交AB的延长线于F,
∵DC∥AB,
∴∠C=∠EBF,
∵CE=BE,∠DEC=∠FEB,
∴△DCE≌△FBE(ASA),
∴BF=DC,
∵AB+CD=4,
∴AB+BF=4=BF,
∴S四边形ABCD=S四边形ABED+S△DCE=S四边形ABED+S△EBF=S△DAF=ADAF=×2×4=4;
(2)如图2,连接AC,
∵CE=BE,AE⊥BC,
∴AC=AB,
设CD=x,则AB=AC=4-x,
Rt△ACD中,由勾股定理得:CD2+AD2=AC2,
x2+22=(4-x)2,
解得:,
∴.
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=3,BC=4.点P在线段AB或线段AD上,点Q中线段BC上,沿直线PQ将矩形折叠,点B的对应点是点E.
(1)如图1,点P、点E在线段AD上,点Q在线段BC上,连接BP、EQ.
①求证:四边形PBQE是菱形.
②四边形PBQE是菱形时,AP的取值范围是 .
(2)如图2,点P在线段AB上,点Q在线段AD上,点E在线段AD上,若AE=,求折痕PQ的长.
(3)点P在线段AB,AP=2,点Q在线段BC上,连AE、CE.请直接写出四边形AECD的面积的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)证明:△ABE为等边三角形;
(2)若CD⊥AB于点F,求线段CD的长;
(3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是【 】
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1:△ABC中,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F
(1)直接写出图1中所有的等腰三角形.指出EF与BE、CF间有怎样的数量关系?
(2)在(1)的条件下,若AB=15,AC=10,求△AEF的周长;
(3)如图2,若△ABC中,∠B的平分线与三角形外角∠ACG的平分线CO交于点O,过O点作OE∥BC交AB于E,交AC于F,请问(1)中EF与BE、CF间的关系还是否存在,若存在,说明理由:若不存在,写出三者新的数量关系,并说明理由;
(4)如图3,∠ABC、∠ACB的外角平分线的延长线相交于点O,请直接写出EF,BE,CF,MN之间的数量关系.不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:
①对称轴为x=2;②当y≤0时,x<0或x>4;③函数解析式为y=﹣x(x+4);④当x≤0时,y随x的增大而增大.其中正确的结论有_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边内一点将绕点C按顺时针方向旋转得,连接已知.
求证:是等边三角形;
当时,试判断的形状,并说明理由;
探究:当为多少度时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司在北部湾经济区农业示范基地采购A,B两种农产品,已知A种农产品每千克的进价比B种多2元,且用24000元购买A种农产品的数量(按重量计)与用18000元购买B种农产品的数量(按重量计)相同.
(1)求A,B两种农产品每千克的进价分别是多少元?
(2)该公司计划购进A,B两种农产品共40吨,并运往异地销售,运费为500元/吨,已知A种农产品售价为15元/kg,B种农产品售价为12元/kg,其中A种农产品至少购进15吨且不超过B种农产品的数量,问该公司应如何采购才能获得最大利润,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com