【题目】已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)
(1)甲骑手在路上停留 小时,甲从Q地返回P地时的骑车速度为 千米/时;
(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;
(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.
【答案】(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=
【解析】
(1)根据题意结合图象解答即可;
(2)求出乙的速度,再利用待定系数法解答即可;
(3)根据(2)的结论列方程解答即可.
(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),
故答案为:1;30.
(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),
60÷24=2.5(小时),
设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x+b,则
24+b=0,解得b=﹣24.
∴乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x﹣24(1≤x≤3.5).
(3)根据题意得,
30(x﹣4)+(24x﹣24)=60﹣8,
解得x=.
答:乙两人相遇前,当时间x=时,甲,乙两骑手相距8千米.
科目:初中数学 来源: 题型:
【题目】如图,是的直径,与相切于点,过点作的平行线交于点,与的延长线相交于点.
试探究与的位置关系,并说明理由;
已知,,,请你思考后,选用以上适当的数据,设计出计算的半径的一种方案:①你选用的已知数是________;②写出求解过程.(结果用字母表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=(1﹣2m)x+m+1及坐标平面内一点P(2,0);
(1)若一次函数图象经过点P(2,0),求m的值;
(2)若一次函数的图象经过第一、二、三象限;
①求m的取值范围;
②若点M(a﹣1,y1),N(a,y2),在该一次函数的图象上,则y1 y2(填“>”、”=”、”<”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y= 在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α= °,β= °;
②求α,β之间的关系式.
(2)请直接写出不同于以上②中的α,β之间的关系式可以是 .(写出一个即可.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:
若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),
则有a=m2+2n2,b=2mn.
这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;
(3)化简:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣)两点,与x轴交于另一点B.
(1)求经过A,B,C三点的抛物线的解析式;
(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标
(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com