分析 根据立方根的定义可求-$\frac{1}{8}$的立方根;根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
解答 解:∵(-$\frac{1}{2}$)3=-$\frac{1}{8}$,
∴-$\frac{1}{8}$的立方根是-$\frac{1}{2}$;
根据题意得:x+2≥0且x-3≠0,
解得:x≥-2且x≠3.
故答案为-$\frac{1}{2}$;x≥-2且x≠3.
点评 本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
同时考查了立方根的定义.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | 3 | C. | 5 | D. | $\frac{27}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 0 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4.8m | B. | 6.4m | C. | 8m | D. | 10m |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (-$\frac{3}{2}$)-1=$\frac{3}{2}$ | B. | $\frac{1}{a}+\frac{1}{b}=\frac{2}{a+b}$ | C. | $\frac{{a}^{2}-{b}^{2}}{a-b}=a+b$ | D. | (-$\frac{1}{20}$)0=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com