精英家教网 > 初中数学 > 题目详情

【题目】如图,的内接三角形,的直径,过点的切线交的延长线于点

(1)求证:

(2)过点的切线于点,求证:

(3)若点为直径下方半圆的中点,连接于点,且,求的长.

【答案】1)证明见解析;(2)证明见解析;(3

【解析】

1)利用AB是圆O的直径和AD是圆O的切线判断出∠ACD=DAB=90°,即可得出结论;

2)利用切线长定理判断出AE=CE,从而得到∠DAC=EAC,再用等角的余角相等判断出∠D=DCE,得出DE=CE,即可得到结论;

3)先求出tanABD的值,进而得出GH=2CH,进而得到BC=3BH,再求出BC建立方程求BH,从而求出GH.

1)∵ABO直径,∴∠ACD=∠ACB90°.

ADO的切线,∴∠BAD90°,∴∠ACD=∠DAB90°.

∵∠D=∠D,∴△DAC∽△DBA

2)∵EAECO的切线,∴AECE(切线长定理),∴∠DAC=∠ECA

∵∠ACD90°,∴∠ACE+∠DCE90°,∠DAC+∠D90°,∴∠D=∠DCE,∴DECE,∴ADAE+DECE+CE2CE,∴CEAD

3)如图,在RtABD中,AD6AB3,∴tanABD2,过点GGHBDH,∴tanABD2,∴GH2BH

∵点F是直径AB下方半圆的中点,∴∠BCF45°,∴∠CGH=∠CHG﹣∠BCF45°,∴CHGH2BH,∴BCBH+CH3BH.在RtABC中,tanABC2,∴AC2BC,根据勾股定理得:AC2+BC2AB2,∴4BC2+BC29,∴BC,∴3BH,∴BH,∴GH2BH.在RtCHG中,∠BCF45°,∴CGGH

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用转化思想求方程的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图

(1)指出旋转中心,并求出旋转角的度数.

(2)求出∠BAE的度数和AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sinB=,tanA=,AC=

(1)求∠B 的度数和 AB 的长.

(2)求 tan∠CDB 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程有实数根.

(1)求m的值;

(2)先作的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.

(1)求函数y=kx+b和y=的表达式;

(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).

(1)求直线与双曲线的解析式.

(2)点P在x轴上,如果S△ABP=3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,yx的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,CDABADBC.已知A(20)B(60)D(03),函数y(x0)的图象G经过点C

(1)求点C的坐标和函数y(x0)的表达式;

(2)将四边形ABCD向上平移2个单位得到四边形A'B'C'D',问点B'是否落在图象G上?

查看答案和解析>>

同步练习册答案