【题目】如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO长为50cm,与水平桌面所形成的夹角∠OAM 为75°.由光源O射出的边缘光线OC,OB 与水平桌面所形成的夹角∠OCA,∠OBA分别为90°和30°.(不考虑其他因素,结果精确到0.1cm.sin75°≈0.97,cos75°≈0.26,≈1.73)
(1)求该台灯照亮水平桌面的宽度BC.
(2)有人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书EF与水平桌面的夹角∠EFC为60°,书的长度EF为24cm,点P为眼睛所在位置,点P在EF的垂直平分线上,且到EF距离约为34cm,求眼睛到水平桌面的距离.
【答案】(1)该台灯照亮水平面的宽度BC大约是83.9cm;(2)眼睛到水平桌面的距离大约是27.38cm.
【解析】
(1)在直角三角形ACO中,根据sin75°= ,求出OC,在直角三角形BCO中,tan30°= ,求出BC即可.
(2)如图,过点P作PH⊥AB于H,交OB于M,过点D作DG⊥PH于G,DQ⊥AB于Q,则四边形DGHQ为矩形,∠GDF=∠EFC=∠DPG=60°,求出PH的长即可求解.
(1)在直角三角形ACO中,sin75°= ,
解得OC=50×0.97≈48.5,
在直角三角形BCO中,tan30°= ,
解得BC=1.73×48.5≈83.9.
答:该台灯照亮水平面的宽度BC大约是83.9cm;
(2)如图2,过点P作PH⊥AB于H,过点D作DG⊥PH于G,DQ⊥AB于Q,
则四边形DGHQ为矩形,∠GDF=∠EFC=∠DPG=60°
由题意DE=DF=12cm,DP=34cm,
∴PG=17cm,QH=DG=17 cm,QF=6cm,GH=DQ=6cm,
∴PH=PH+GH=17+6≈27.38cm.
故眼睛到水平桌面的距离大约是27.38cm.
科目:初中数学 来源: 题型:
【题目】如图,抛物线L:y=﹣(x﹣2)2+m2+2m与x轴交于A,B,直线y=kx﹣1与y轴交于E,与L的对称轴交于点F(n,3),与L交于D,抛物线L的对称轴与L交于P.
(1)求k的值.
(2)点P能否与点F关于x轴的对称点重合?若认为能,请求出m的值;若认为不能,说明理由.
(3)小林研究了抛物线L的解析式后,得到了如下的结论:因为m可以取任意实数,所以点C可以在y轴上任意移动,即C点可以到达y轴的任何位置,你认为他说的有道理吗?说说你的想法.
(4)当抛物线L与直线y=kx﹣1有两个公共点时,直接写出适合条件的m的最大整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:
①A、B之间的距离为1200m; ②乙行走的速度是甲的1.5倍;③ b=960; ④ a=34.
以上结论正确的有( )
A. ①② B. ①②③ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据: =1.1, =1.2, =1.3, =1.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,且abc≠0)与直线l都经过y轴上的同一点,且抛物线L的顶点在直线l上,则称此抛物线L与直线l具有“一带一路”关系,并且将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.
(1)若“路线”l的表达式为y=﹣x+2,它的“带线”L的顶点在反比例函数y=的图象上,求“带线”L的表达式;
(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n的值;
(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P为圆心的圆与“路线”l相切于点A时,求出点P的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=的图象经过点A(x1,y1)和B(x2,y2)(x1<x2)
(1)若A(4,n)和B(n+,3),求反比例函数的表达式;
(2)若m=1,
①当x2=1时,直接写出y1的取值范围;
②当x1<x2<0,p=,q=,试判断p,q的大小关系,并说明理由;
(3)若过A、B两点的直线y=x+2与y轴交于点C,连接BO,记△COB的面积为S,当<S<1,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q、R处,且相距30海里.如果知道“远航”号沿东北方向航行,则“海天”号沿( )方向航行.
A.西南B.东北C.西北D.东南
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com