精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,AOM面积为1.

(1)求反比例函数的解析式;

(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

【答案】(1) (2)(0,

【解析】

(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.

(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,

|k|=1,

k>0,

k=2,

故反比例函数的解析式为:y=

(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.

,解得,或

A(1,2),B(4,),

A′(﹣1,2),最小值 A′B= =

设直线 A′B 的解析式为 y=mx+n,

,解得

∴直线 A′B 的解析式为 y=

x=0 时,y=

P 点坐标为(0,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.

(1)求证:∠A2E,以下是小明的证明过程,请在括号里填写理由.

证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)

∴∠ACD=∠ABC+A,∠2=∠1+E(_________)

∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质)

CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)

∴∠ACD22,∠ABC21(_______)

∴∠A2221(_________)

2(2﹣∠1)(_________)

2E(等量代换)

(2)如果∠A=∠ABC,求证:CEAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,已知C90°B50°,点D在边BC上,BD2CD(图4).把ABC绕着点D逆时针旋转m0m180)度后,如果点B恰好落在初始RtABC的边上,那么m_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:

(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;

(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;

(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,An在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时满足条件的正方形AnBnCnDn的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A3m),B﹣2﹣3)是直线AB和某反比例函数的图象的两个交点.

1)求直线AB和反比例函数的解析式;

2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;

3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC60°,∠DAE45°,点D到地面的垂直距离DE3m

1)求两面墙之间距离CE的大小;

2)求点B到地面的垂直距离BC的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠ACB=90°CD⊥ABD∠BAC的平分线分别交BCCDEF

1)求证:∠ACD∠B

2)求证:△CEF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买种图书花费了3000元,购买种图书花费了1600元,A种图书的单价是种图书的1.5倍,购买种图书的数量比种图书多20本.

1)求两种图书的单价;

2)书店在世界读书日进行打折促销活动,所有图书都按8折销售学校当天购买了种图书20本和种图书25本,共花费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,PD切O于点C,与BA的延长线交于点D,DEPO交PO延长线于点E,连接PB,EDB=EPB

(1)求证:PB是的切线

(2)若PB=6,DB=8,求O的半径

查看答案和解析>>

同步练习册答案