精英家教网 > 初中数学 > 题目详情
4.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,$\frac{1}{2}$AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.
(1)求证:D是$\widehat{AE}$的中点;
(2)求证:∠DAO=∠B+∠BAD.

分析 (1)根据圆同弧或等弧所对的圆周角相等,可以证明该结论;
(2)根据OD∥BC,OD=OA,可以得到角的关系,然后通过转化就可以证明结论.

解答 (1)∵由已知可得,OD∥BC,OD=OC,
∴∠ODC=∠DCE,∠ODC=∠OCD,
∴∠OCD=∠DCE,
∴弧AD=弧DE,
即D是$\widehat{AE}$的中点;
(2)证明:延长AD与BC交于点G,如下图所示,

∵OD∥BC,OD=OA,
∴∠ADO=∠AGE,∠ADO=∠DAO,
∴∠AGE=∠DAO,
∵∠AGE=∠B+∠BAD,
∴∠DAO=∠B+∠BAD.

点评 本题考查圆周角定理,圆心角、弧、弦的关系、平行线的性质,三角形的外角与内角的关系,解题的关键是明确题意,找出所求结论需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.用适当的方法解方程:
(1)x2-1=x;    
(2)(2y-1)2=3(1-2y);   
(3)3x2-8x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知△ABC和过点O的两条互相垂直的直线x、y,画出△ABC关于直线x对称的△A′B′C′,再画出△A′B′C′关于直线y对称的△A″B″C″,观察△ABC与△A″B″C″,这两个三角形具有怎样的对称性?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,点P为等边△ABC外接圆劣弧BC上一点
(1)填空:∠BPC=120度;
(2)若点D在线段AP上,且DP=CP,求证:DA=PB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在由边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则cos∠APD=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:x2(x-1)-x(x2+x-1),其中x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.一次数学活动课上,老师利用“在面积一定的矩形中,正方形的周长最短”这一结论,推导出“式子x+$\frac{1}{x}$(x>0)的最小值为2”.其推导方法如下:在面积是1的矩形中,设矩形的一边长为x,则另一边长是$\frac{1}{x}$,矩形的周长是2(x+$\frac{1}{x}$);当矩形成为正方形时,就有x=$\frac{1}{x}$(x>0),解得x=1,这时矩形的周长2(x+$\frac{1}{x}$)=4最小,因此x+$\frac{1}{x}$(x>0)的最小值是2,模仿老师的推导,你求得式子$\frac{{x}^{2}+9}{x}$(x>0)的最小值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙O上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值为(  )
A.2+$\sqrt{2}$B.2+$\frac{\sqrt{2}}{2}$C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)先化简,再求值:x2+(-x2+3xy+2y2)-(x2-xy+2y2),其中x=1,y=3.
(2)先化简,再任选一个适当的a值代入求值:3a2+[a2+(5a2-2a)-3(a2-3a)].

查看答案和解析>>

同步练习册答案