如图1,矩形ABCD中,AB=6,BC=8,点E、F分别是BC、CD边上的点,且AE⊥EF,BE=2,
(1)求证:AE=EF;
(2)延长EF交矩形∠BCD的外角平分线C![]()
P于点P(图2),试求AE与EP的数量关系;
![]()
(1)∵AE⊥EF,∴∠BEA+∠CEF=90°。
∵四边形ABCD为矩
形,∴∠B=∠C=90°。
∴∠BAE +∠BEA =90°。∴∠BA E=∠CEF。
又∵AB=DC=6,BC=8,BE=2,∴AB=EC=6。
∴△ABE≌△ECF(ASA)。
∴AE=EF。
(2)如图,在AB上取一点M,使BM=BE,
连接ME。
![]()
∴A
M=CE。
∴∠BME=45°。∴∠AME=135°。
∵CP是外角平分线,∴∠
DCP=45°。∴∠ECP=135°。
∴∠AME=∠ECP。
由(1)知∠MA E=∠CEP
,
∴△AME∽△ECP。∴
。
∵AM=2,EC=3,∴
。
∴AE与EP的数量关系是
。
【考点】矩形的
性质,全等三角形的判定和性质,外角平分线定义
,相似三角形的判定和性质。
![]()
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=
8cm.点D、E、F分别是
边AB,BC,AC的中点,连接DE,DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点D停止;
点Q沿BC的方向运动,当点P停止运动时
,点Q
也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQ
N与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)
![]()
(1)当点P运动到点F时,CQ= cm;
(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;
(3)当点P在线段FD上运动时,求y与x之间的函数关
系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知抛物线y1=﹣2x2+2,直线y2=﹣2x+2,当x任取一值时,x对应的函数值分别为y1、y
2.若y1≠y2,取y1、y2中的较大值记为M;若y1=y2
,记M=y1=y2。例如:当x=﹣1时,y1=0,y2=4,y1<y2,此时M=4。下列判断:
①当
x<0时,y1>y2;
②当x>0时,x值越大,M值越小;
③当x≥0时,使得M大于2的x值不存在;
④使得M=1的x值是
。
其中正确的有【 】
![]()
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
已知A,B,C为⊙O上相邻的三个六等分点,点E在劣弧AC上(不与A,B,C重合),EF
为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′。设EB′=b,EC=c,EA′=p。试探究b,c,p三者的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,平面之间坐标系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=
,经过O,C两点做抛物线
(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)
![]()
(1)填空:用含t的代数式表示点A的坐标及k的值:A ,k= ;
(2)随着三角板的滑动,当a=1时:
①请你验证:抛物
线![]()
的顶点在函数
的图象上;
②当三角板滑至点E为AB的中点时,求t
的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com