精英家教网 > 初中数学 > 题目详情

【题目】对于每个非零自然数n,抛物线y=x2 x+ 与x轴交于An、Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2017B2017的值是(
A.
B.
C.
D.1

【答案】C
【解析】解:令y=x2 x+ =0, 即x2 x+ =0,
解得x= 或x=
故抛物线y=x2 x+ 与x轴的交点为( ,0),( ,0),
由题意得AnBn=
则A1B1+A2B2+…+A2017B2017=1﹣ + +…+ =1﹣ =
故选C.
【考点精析】掌握抛物线与坐标轴的交点是解答本题的根本,需要知道一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:

(1)校团委随机调查了多少学生?请你补全条形统计图;

(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数额的中位数是多少元?

(3)为捐助贫困山区儿童学习,全校1000名学生每人自发地捐出一周的零花钱.请估算全校学生共捐款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB=CD,ABCD相交于点O,且∠AOC=60°,CE是由AB平移所得,ACBD不平行,则AC+BDAB的大小关系是:AC+BD_____AB.(填”““=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1
②请直接写出AC1 与BD1的位置关系.

(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1 . 判断AC1与BD1的位置关系,说明理由,并求出k的值.

(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1 , 设AC1=kBD1 . 请直接写出k的值和AC12+(kDD12的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OE⊥OD,OE平分∠AOF.

(1)∠BOD∠DOF相等吗?请说明理由.

(2)若∠DOF=∠BOE,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知点A(8,0)和点B(0,6),点C是AB的中点,点P在折线AOB上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°,AC=BC=4cm,点D是斜边AB的中点,点E从点B出发以1cm/s的速度向点C运动,点F同时从点C出发以一定的速度沿射线CA方向运动,规定:当点E到终点C时停止运动;设运动的时间为x秒,连接DE、DF.

(1)填空:SABC=   cm2

(2)当x=1且点F运动的速度也是1cm/s时,求证:DE=DF;

(3)若动点F以3cm/s的速度沿射线CA方向运动;在点E、点F运动过程中,如果有某个时间x,使得ADF的面积与BDE的面积存在两倍关系,请你直接写出时间x的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN是晾衣架的一个滑槽,点P在滑槽MN上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm,且AB=CD=CP=DM=20cm.
(1)当点P向下滑至点N处时,测得∠DCE=60°时 ①求滑槽MN的长度;
②此时点A到直线DP的距离是多少?
(2)当点P向上滑至点M处时,点A在相对于(1)的情况下向左移动的距离是多少? (结果精确到0.01cm,参考数据 ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.

(1)求直线AB的解析式.

(2)求OAC的面积.

(3)当OMC的面积是OAC的面积的时,求出这时点M的坐标.

查看答案和解析>>

同步练习册答案