【题目】为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:
(1)请直接补全条形统计图;
(2)若该校共有学生3200名,试估计该校喜爱看课外书的学生人数。
(3)若被调查喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,请用列表或画树状图的方法求恰好抽2名男生的概率.
【答案】(1)看电视的学生有10人(图略);(2)约有960人爱看课外书;(3)概率为(过程见解析)
【解析】
1)先用喜爱社会实践的人数除以它所占的百分比计算出调查的总人数,再计算出看电视的人数,然后补全条形统计图;
(2)用3200乘以样本中喜爱看课外书人数的百分比可估计该校喜爱看课外书的学人数;
(3)画树状图展示所有12种等可能的结果数,再找出恰好抽到2名男的结果数,然后根据概率公式计算.
解:(1)调查的总人数为5÷10%=50(人),
所以看电视的人数为50-15-20-5=10(人),
补全条形统计图为:
(2)3200×=960,
所以估计该校喜爱看课外书的学人数为960人;
(3)画树状图:
共有12种等可能的结果数,其中恰好抽到2名男的结果数为6,
所以恰好抽到2名男的概率==.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为 时,四边形AOCE是菱形;
②若AE=6,EF=4,DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2.
(1)求m的取值范围;
(2)如果这个方程的两个实根分别为x1=α,x2=β,且α<β,当m>0时,试比较α,β,2,3的大小,并用“<”连接;
(3)求二次函数y=(x-x1)(x-x2)+m的图像与x轴的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,交BA的延长线于点F,若弧EF的长为π,则图中阴影部分的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=与x轴交于A,C(A在C的左侧),点B在抛物线上,其横坐标为1,连接BC,BO,点F为OB中点.
(1)求直线BC的函数表达式;
(2)若点D为抛物线第四象限上的一个动点,连接BD,CD,点E为x轴上一动点,当△BCD的面积的最大时,求点D的坐标,及|FE﹣DE|的最大值;
(3)如图2,若点G与点B关于抛物线对称轴对称,直线BG与y轴交于点M,点N是线段BG上的一动点,连接NF,MF,当∠NFO=3∠BNF时,连接CN,将直线BO绕点O旋转,记旋转中的直线BO为B′O,直线B′O与直线CN交于点Q,当△OCQ为等腰三角形时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形,P为射线上的一点,以为边作正方形,使点F在线段的延长线上,连接.
(1)如图1,若点P在线段的延长线上,判断的形状,并说明理由;
(2)如图2,若点P在线段上
①若点P是线段的中点,判断的形状,并说明理由;
②当时,请直接写出的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在等腰直角三角形中,,,D,E分别在上,且,此时有,.
(1)如图①中 绕点A旋转至如图②时上述结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
(2)将图①中的绕点A旋转至DE与直线AC垂直,直线BD交CE于点F,若,,请画出图形,并求出BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论:①16a+4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③c=﹣3a;④若△ABC是等腰三角形,则b=﹣或﹣.其中正确的有_____.(请将正确结论的序号全部填在横线上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com