分析 (1)四边形ADEF是平行四边形,可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;
(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;
(3)当∠BAC=60°时,四边形ADEF不存在.
解答 (1)证明:∵△ABD,△BCE都是等边三角形,
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
在△ABC与△DBE中,
$\left\{\begin{array}{l}{AB=BD}\\{∠DBE=∠ABC}\\{BC=BE}\end{array}\right.$,
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四边形ADEF是平行四边形,
∴AE与DF互相平分;
(2)解:当∠BAC=150°时,AE=DF,
理由是:∵△ABD和△ACF是等边三角形,
∴∠DAB=∠FAC=60°,
∵∠BAC=150°,
∴∠DAF=360°-60°-60°-150°=90°,
∴四边形ADEF是矩形,
∴AE=DF,
∴∠BAC=150°时,AE=DF;
(3)当∠BAC=60°时,四边形ADEF中的A点与E点重合,
此时以A、D、E、F为顶点的四边形不存在.
点评 本题考查了等边三角形的性质全等三角形的判定及三角形内角和为180°、平行四边形和矩形的判定等知识,熟练掌握相关的定理是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | m-5>n-5 | B. | 2m+4>2n+4 | C. | 6m>6n | D. | -$\frac{1}{3}$m$>-\frac{1}{3}$n |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com