精英家教网 > 初中数学 > 题目详情

【题目】1)解方程:x22x30

2)如图,正方形ABCD中,点EFC分别在ABBCCD上,且∠EFG90°;求证:EBF∽△FCG

【答案】1x3x=﹣1;(2)见解析.

【解析】

1)理由因式分解法解方程;

2)先根据正方形的性质得∠B=∠C90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可判定△EBF∽△FCG

1)解:(x3)(x+1)=0

解得x3x=﹣1

2)证明:四边形ABCD为正方形,

∴∠BC90°

∴∠BEF+∠BFE90°

∵∠EFG90°

∴∠BFE+∠CFG90°

∴∠BEFCFG

∵∠BC90°

∴△EBF∽△FCG

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O 为原点,点 A(4,0),点 B(0,3),把△ABO 绕点 B 逆时针旋转,得△A′BO′,点 A、O 旋转后的对应点为 A′、O′,记旋转角为ɑ.

(1)如图 1,若ɑ=90°,求 AA′的长;

(2)如图 2,若ɑ=120°,求点 O′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有三个完全相同的小球,分别标有数字234.从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数,请用列表法或画树状图的方法完成下列问题.

(1)按这种方法组成两位数45_____事件,填(“不可能随机必然”)

(2)组成的两位数能被3整除的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段的中点,上一点,连接交于.

(1)如图1,当中点时,求的值.

(2)如图2,当=时,求tan的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm,车座B到地面的距离BE90cm,中轴轴心C到地面的距离CF33cm,车架中立管BC的长为60cm,后轮切地面L于点D.(参考数据:sin720.95cos18°≈0.95tan43.5°≈0.9 5

1)求∠ACB的大小(精确到1°)

2)如果希望车座B到地面的距离B'E′为96.8cm,车架中立管BC拉长的长度BB′应是多少?(结果取整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线y=﹣x2x+x轴交于AB两点(点A在点B的左侧),与y轴交于点C,直线l经过BC两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CDBD.设点M运动的时间为tt0),请解答下列问题:

1)求点A的坐标与直线l的表达式;

2)①请直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时t的值;

②求点M运动的过程中线段CD长度的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC,∠BAC90°BC5AC2,以A为圆心、AB为半径画圆,与边BC交于另一点D

1)求BD的长;

2)连接AD,求∠DAC的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线(其中为常数且)与轴交于两点,与轴交于点.

1)当时,求抛物线的对称轴方程及顶点坐标;

2)填空:__________,点的坐标为____________.(以上结果均用含的式子表示);

3)连接,线段的垂直平分线交抛物线的对称轴于点轴上存在一点(异于点)使得.

①求点的坐标;

②点关于抛物线对称轴的对称点为点,试求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线yax22ax3a0)与x轴交于AB两点(点A在点B左侧).

1)求抛物线的对称轴;

2)若AB4,求该抛物线的解析式;

3)若AB4,直接写出a的取值范围.

查看答案和解析>>

同步练习册答案