| A. | 90° | B. | 135° | C. | 150° | D. | 180° |
分析 标注字母,利用“边角边”判断出△ABC和△DEA全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.
解答 解:如图,在△ABC和△DEA中,![]()
$\left\{\begin{array}{l}{AB=DE}\\{∠ABC=∠DEA=90°}\\{BC=AE}\end{array}\right.$,
∴△ABC≌△DEA(SAS),
∴∠1=∠4,
∵∠3+∠4=90°,
∴∠1+∠3=90°,
又∵∠2=45°,
∴∠1+∠2+∠3=90°+45°=135°.
故选B.
点评 本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 等于4$\sqrt{2}$ | B. | 等于4$\sqrt{3}$ | ||
| C. | 等于6 | D. | 随点P的位置而变化 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 正方形的面积大 | B. | 圆的面积大 | C. | 它们同样大 | D. | 无法比较 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com