精英家教网 > 初中数学 > 题目详情
15.如图,已知:∠A=∠B,CE⊥AB,DF⊥AB,垂足分别为E,F,AD=BC.求证:AE=BF.

分析 由AAS证明△ADF≌△BCE,得出对应边相等AF=BE,再由AF-EF=BE-EF,即可得出结论.

解答 证明:∵CE⊥AB,DF⊥AB,
∴∠CEB=∠DFA=90°,
在△ADF和△BCE中,$\left\{\begin{array}{l}{∠DFA=∠CEB}&{\;}\\{∠A=∠B}&{\;}\\{AD=BC}&{\;}\end{array}\right.$,
∴△ADF≌△BCE(AAS),
∴AF=BE,
∴AF-EF=BE-EF,
∴AE=BF.

点评 本题考查了全等三角形的判定与性质、等式的性质;证明三角形全等得出对应边相等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.在Rt△ABC中,∠C=90°,AB=4,AC=1,则tanA的值是(  )
A.$\frac{{\sqrt{15}}}{4}$B.$\sqrt{15}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某学校组织学生到离校20千米的国家博物馆进行实践教育活动,同学们统一从学校乘车前往.小明在去学校的途中遇上堵车,比同学们晚15分钟从学校出发,由他的家长开车沿相同路线送小明赶往国家博物馆,结果小明和同学们同时到达.已知小明的速度是同学们的速度的2倍,求同学们的速度是每小时多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,
(1)求此抛物线的解析式;
(2)抛物线第一象限上有一动点M,过点M作MN⊥x轴,垂足为N,请求出MN+2ON的最大值,及此时点M坐标;
(3)抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A、B、C三点的抛物线l上,
(1)求抛物线l的解析式;
(2)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求点P的坐标;
(3)若抛物线l上有且只有三个点到直线AC的距离为n,求出n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在等边三角形ABC中,D为边AC的中点,DG∥BC交AB于点G,E为BC延长线上的一点,且∠EDF=120°,DF交AB于点F.
(1)求证:△CDE≌△GDF;
(2)求证:AF-CE=$\frac{1}{2}$AB;
(3)连接BD,已知AB=8,DF=2$\sqrt{6}$,求∠BDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在Rt△ABC中,AB=AC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC的中点上,将三角板绕点O旋转.
(1)如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明)
(2)如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).
(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为(3,0);
(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;
(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.
①若特征点C为直线y=-4x上一点,求点D及点C的坐标;
②若$\frac{1}{2}$<tan∠ODE<2,则b的取值范围是$-\frac{1}{2}≤b<0$或$\frac{5}{8}<b<4$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.
(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;
(2)△AEF与四边形ABCD重叠部分的面积为6.

查看答案和解析>>

同步练习册答案