【题目】已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
【答案】(1)见解析;(2)四边形AEMF是菱形,见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
解:(1)∵ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
又∵AE = AF,
∴(HL),
∴BE = DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
科目:初中数学 来源: 题型:
【题目】定义:给定两个不等式组和,若不等式组的任意一个解,都是不等式组的一个解,则称不等式组为不等式组的“子集”。例如:不等式组:是:的“子集”。
(1)若不等式组:,,则其中不等式组 是不等式组的“子集”(填或);
(2)若关于的不等式组是不等式组的“子集”,则的取值范围是 ;
(3)已知,,,为互不相等的整数,其中,,下列三个不等式组:,,满足:是的“子集”且是的“子集”,求的值;
(4)已知不等式组有解,且是不等式组的“子集”,则满足条件的有序整数对共有多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李林想了解班上同学是否具有阅读习惯及分享意识,于是设计了一份调查问卷:
李林对班上位同学进行了调查,收集调查结果如下:
问题1的调查结果
选项 | |||
人数 |
问题2的调查结果
请在下图中将问题1的调查结果用条形统计图表示出来:
请用下面的统计表整理问题2的调查结果:
选项 | 划记 | 人数 | 百分比 |
合计 |
根据调查结果,你认为班上同学在阅读习惯及分享意识方面做得怎么样?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】试解答下列问题:
(1)在图1我们称之为“8字形”,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数是 个;
(3) 在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试写出∠B与∠P、∠D之间数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图(2),∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”。应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F. 若AB=6,BC=,则FD的长为( )
A. 2B. 4C. 6D. 23
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是计算机中的一种益智小游戏“扫雷”的画面,在一个的小方格的正方形 雷区中,随机埋藏着颗地雷,每个小方格内最多只能埋藏颗地雷。小红在游戏开始时首先随机的点击一个方格,该方格中出现了数字“”,其意义表示该格的外围区域(图中阴影部分,记为区域)有颗地雷;接着小红又点击了左上角第一个方格,出现了数字“”,其外围区域(图中阴影)记为区域;区域与区域以及出现数字“”和“”两格以外的部分记为区域。请分别计算出区、区、区点中地雷的概率,那么她应点击、、中的哪个区域?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com