【题目】如图,⊙O为△ABC的内切圆,切点分别为D,E,F,∠C=90°,BC=3,AC=4.
(1)求△ABC的面积;
(2)求⊙O的半径;
(3)求AF的长.
【答案】(1) 6;(2)⊙O的半径为1;(3) 3
【解析】(1)、已知了直角三角形的两条直角边,可根据直角三角形的面积公式求出△ABC的面积;(2)、连接OE、OD,则OE、OD即为所求的半径;易证得四边形OECD是正方形,那么CE、CD都等于⊙O的半径,可用⊙O的半径分别表示出BE、AD的长,由切线长定理知BE=BF、AD=AF,即可由BF+AF=AB=5求出⊙O的半径;(3)、求得⊙O的半径后,即可求出AD的值,而AF=AD,由此得解.
(1)、∵∠C=90°,BC=3,AC=4, ∴S△ABC=×3×4=6;
(2)、如答图,连结OE,OD,OF.
∵⊙O为△ABC的内切圆,D,E,F为切点, ∴EB=FB,CD=CE,AD=AF,OE⊥BC,OD⊥AC.
又∵∠C=90°,OD=OE, ∴四边形ECDO为正方形, 设OE=OD=CE=CD=x,
则EB=3-x,AD=4-x,FB=3-x,AF=4-x. 又∵AB==5,∴3-x+4-x=5,
解得x=1.即⊙O的半径为1;
(3)∵CD=1,∴AF=AD=4-1=3.
科目:初中数学 来源: 题型:
【题目】如图,抛物线C1:y=-x2+2x的顶点为A,与x轴的正半轴交于点B.
(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的表达式;
(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,求抛物线C2的表达式(用k表示);
(3)在(2)条件下,点P在抛物线C2上,满足S△PAC=S△ABC,且∠ACP=90°.当k>1时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上点A对应的数为a,点B对应的数为b,点A在负半轴,且|a|=6,b是最小的正偶数.
(1)求线段AB的长;
(2)若点C在数轴上对应的数为x,且x是方程2x+1=3x-9的解,在数轴上是否存在点P,使得PA+PB=BC+AB,若存在,求出点P对应的数,若不存在,说明理由.
(3)如图,若Q是B点右侧一点,QA的中点为M,N为QB的四等分点且靠近于Q点,当Q在B的右侧运动时,说明:QM﹣BN的值不变,并求出其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D, 连接BE,过点O作OC∥BE交切线DE于点C,连接AC .
(1)求证:AC是⊙O的切线 ;
(2)若BD=OB=4,求弦AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境
在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.
操作发现
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于______(用含α的式子表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com